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Accurately predicting brain age is a crucial step towards assessing abnormal
aging patterns in individuals, as many neurological diseases are associated
with deviations from normal brain aging patterns. In this study, we leveraged
diverse machine learning methodologies grounded in feature engineering
to precisely forecast brain age. Our comparative analysis of these mod-
els revealed a salient positive influence of feature engineering on overall
model performance. However, individual models demonstrated superior
performance on the validation set, indicating the occurrence of overfitting.
Contrary to anticipated outcomes, the efficacy of ensemble models fell short
of expectations, while residual models exhibited superior performance in a
multi-stage configuration. These findings highlight the importance of ap-
propriate feature engineering and model selection in accurately predicting
brain age, which could potentially aid in the diagnosis and treatment of
neurological diseases associated with abnormal aging patterns.
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1 INTRODUCTION
In recent years, China has entered an aging population society,
which will be an important challenge for our country in this century.
Various diseases caused by abnormal aging, such as Alzheimer’s
disease[Wen et al. 2020] and Parkinson’s disease[Bloem et al. 2021],
have brought about increasing economic and social problems. Brain
Age based on structural magnetic resonance is widely used to de-
scribe the aging process of the brain. The Predicted Age Difference
(PAD)[Cole and Franke 2017] between brain age and actual physio-
logical age, that is, the degree of deviation from the normal aging
trajectory of the brain, can be used as an objective indicator to
measure the abnormal aging of individuals. Studies have shown
that many types of neurological diseases and metabolic diseases
are associated with abnormal aging of the brain[Franke et al. 2012].
The greater the PAD value in the elderly, the higher the risk of
neuropsychiatric problems.
The present paradigm of brain diagnosis heavily relies on the

subjective knowledge and experience of front-line clinicians. This
traditional approach poses several challenges such as diagnostic
errors, medical delays, and other related issues that can impede
the overall health of the patients. Hence, there is a critical need to
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explore new scientific avenues that can potentially transform the
current diagnostic landscape and improve the accuracy and efficacy
of brain diagnosis. Brain age prediction provides a new method to
explore the abnormal changes of the brain during aging and how
neuropsychiatric diseases affect normal aging, and provides a new
perspective to study the individual differences of brain aging[Cole
and Franke 2017].

In this research project, we have endeavored to explore the appli-
cation of various machine learning models in the context of brain
age detection. Our work encompasses a comprehensive pipeline
that can be summarized as follows:

• We conduct a wide range of data depict methods to help us
build a visual structure of this data set.

• We utilized correlation analysis to familiarize us with the
correlation among features.

• Based on the understanding we obtained from the afore steps,
we apply several feature expansion method in order to en-
hance the information supplied by certain important features.

• We compared a various of models, which could be divided
into single model, ensemble learning and residual learning.
This research is also one of the questions in the 2023 iflytek
Developer Competition. We hope to make an exploration and
contribution to the future brain age prediction technology
through this work.

2 RELATED WORKS
RVM. Relevance Vector Machine (RVM)[Tipping 1999], a sparse

probabilistic model similar to Support Vector Machine (SVM)[Cortes
and Vapnik 1995], was proposed by Micnacl E. Tepping in 2000, and
it represents a novel supervised learningmethod. RVM is trained in a
Bayesian framework, employing automatic relevance determination
(ARD)[Wipf and Nagarajan 2007] to remove irrelevant points under
the structure of the prior parameters. This approach allows RVM
to exhibit sparsity, efficiency, and robustness even in cases of small
sample sizes. The ARD technique is a powerful tool for selecting
relevant features and improving the predictive accuracy of a model,
making RVM a promising candidate for various applications in
machine learning and data mining.

XGBoost. ExtremeGradient Boosting (XGBoost)[Chen andGuestrin
2016] is a robust and widely used decision tree-based ensemble
learning model in the field of machine learning. The fundamental
concept of XGBoost is to implement the gradient boosting algo-
rithm[Schapire and Freund 2013] in each iteration to rectify the
errors of the previous iteration. The model fits the residuals by
adding a new decision tree at each iteration, thus enhancing the
model’s performance. Due to its excellent performance in various
applications, XGBoost is considered as one of the most powerful
machine learning algorithms in practice.

LightGBM. Light Gradient Boosting Machine (LightGBM)[Ke
et al. 2017] is a state-of-the-art gradient boosting model which offers
several advantages, such as high-performance, fast, efficient, and
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low memory footprint. Compared to traditional Gradient Boosting
Decision Tree (GBDT) algorithm, LightGBM employs the histogram-
based decision tree algorithm, which discretizes continuous features
and transforms the problem into a classification problem. The his-
togram method is then used to partition the data, which signifi-
cantly reduces the computational complexity and memory occupa-
tion. This approach has demonstrated promising results in handling
large-scale data.

3 DATA PREPROCESSING
The feature data assumes a critical role in determining the final
results in the context of this study. As demonstrated in Figure 1,
the original dataset is first subjected to appropriate pre-processing
techniques, followed by feature engineering. The ensuing section
expounds upon the details of the dataset and the comprehensive
data pre-processing process.

3.1 Demographic
The present training dataset comprises a total of 2000 samples, each
of which consists of brain region structure-related indicators such as
sex, age, volume, surface area, thickness, mean curvature, Gaussian
curvature, and MRI scanner type. These indicators were obtained
by medical personnel through whole brain segmentation of the
original T1-weighted structural magnetic resonance images[Liang
et al. 2015]. The label for each sample corresponds to the patient’s
actual brain age, as determined by a team of expert physicians.
Notably, the dataset also features data pertaining to two distinct
regions of the left and right brain, which will be subjected to further
processing in the feature engineering phase.
We divide the above data sets with a ratio of 0.8:0.2, and apply

five-fold cross validation in the experiments to reduce the influence
of the original data distribution on the validation results.

3.2 Data Visualization and Value Check
As explicated in Figure 2 and 3, we employed the missingno package
to visualize the presence of missing values in the dataset. The out-
come revealed that the provided dataset is complete, with no miss-
ing values. To further explore the distribution of data values across
individual files, we performed heatmap analysis, which unveiled
significant variation. To mitigate this issue, we opted for Min-Max
normalization of the data to ensure uniformity and comparability
in our subsequent analyses.

3.3 Feature Engineering
In the realm of feature engineering, two primary techniques are em-
ployed, namely feature selection and feature augmentation. Given
that the features provided by the dataset are evidently inadequate, it
is imperative to explore feature augmentation to uncover additional
information concealed within the data. To this end, our study em-
ploys various feature augmentation methods, which can be broadly
categorized into linear and nonlinear expansions.

In the context of linear expansion, it is common practice to apply
a manifold linear combination of original features. However, this
simple combination of features may not be sufficient to manifest
the sophisticated correlation between features that is required for

a model to more clearly study them. To address this limitation, re-
searchers often conduct some basic nonlinear feature expansion,
such as using power functions. However, such methods may not
always lead to clear improvements in model performance. In light
of this, more complex feature expansion methods, such as the Trun-
cated Power Basis Function[James et al. 2013], have been proposed.
This expansion involves formulating the feature expansion in a
more intricate manner, which can better capture the complex re-
lationships between features. This expansion could be formulated
as:

𝑁1 (𝑋 𝑗 ) = 1;𝑁2 (𝑋 𝑗 ) = 𝑋 𝑗 (1)

𝑁ℎ+2 (𝑋 𝑗 ) = 𝑑ℎ (𝑋 𝑗 ) − 𝑑𝑘 𝑗−1 (𝑋 𝑗 );ℎ = 1, 2, ..., (𝑘 𝑗 − 2) (2)

where

𝑑ℎ (𝑋 𝑗 ) =
(𝑋 𝑗 − 𝜏ℎ)3+ − (𝑋 𝑗 − 𝜏𝑘 𝑗

)3

𝜏ℎ − 𝜏𝑘 𝑗

(3)

and we denoted our knots as 𝜏𝑖 , 𝑖 = 1, 2, ..., 𝑘 𝑗
This expansion could project the origin features into a space with

dimension decided by k. Through this more complicated nonlinear
projection the expanded features could supply the model with some
nonlinear in advanced, instead of discovering it by the model itself.

Finally, we fuse the normalized features of the left and right brain
to obtain hybrid features:

𝑀𝑖𝑥𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = 0.5 × 𝑙𝑒 𝑓 𝑡𝑏𝑟𝑎𝑖𝑛 + 0.5 × 𝑟𝑖𝑔ℎ𝑡𝑏𝑟𝑎𝑖𝑛 (4)

and, we concatenate the original features and mixed features to
form the feature for the model input:

𝐹𝑖𝑛𝑎𝑙𝑀𝑖𝑥𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = [𝐴𝑙𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒] (5)

4 MODELING
Based on the featurematrices that have been preprocessed, we utilize
a variety of machine learning techniques to develop regression and
prediction models. To further improve the accuracy of our models,
we construct ensemble models and residual models as depicted in
FIG 4. In order to evaluate the effectiveness of these models, we
employ the mean absolute error (MAE) as the loss function and
compare the outcomes. The model with the best performance is
then selected for final submission.

4.1 Ensemble Learning
Based on the preprocessed feature matrices, a range of machine
learning techniques have been employed to develop regression and
prediction models. In order to enhance the accuracy of these models,
ensemble models and residual models have been constructed, as
illustrated in Figure 6. To evaluate the effectiveness of these models,
the mean absolute error (MAE) is utilized as the loss function and
the outcomes are compared. The model with the best performance
is then selected for final submission. To improve the generalization
ability of the model and to mitigate the risk of overfitting, ensemble
model techniques are utilized. In addition to the basic Bagging[Lee
et al. 2020], Adaboost[Freund et al. 1996] and GBDTGBDT[Friedman
2001] techniques, the predictions generated by the above-mentioned
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Fig. 1. Data processing flow, including data visualization, data augmentation and feature combination

Fig. 2. Missing Value Check of the dataset

major machine learning models are also combined directly to obtain
more robust and generalized results.

4.2 Residual Learning
Since there is often a certain gap between the predicted data and
the real data, we want to make reasonable use of these residuals to
further optimize the performance of our model. For a given model
prediction𝑦′ and ground truth𝑦 of the first stage model, the residual
can be expressed as:

𝑟 = 𝑦′ − 𝑦 (6)
Then, we again build a new machine learning model in the second
stage to predict the gap between the true value and the predicted
value 𝑟 ′ in the first stage, and finally the predicted output of the
model can be represented as:

𝑦𝑓 𝑖𝑛𝑎𝑙 = 𝑦′ + 𝑟 ′ (7)

5 EXPERIMENTS
In the present study, a plethora of experiments were conducted to
evaluate the model’s performance on the validation set and test set.
The outcomes presented in Table 1 highlighted the significance of
feature engineering on the model’s efficacy. The findings revealed
that models utilizing truncated power basis function expansion
and feature combination outperformed those without feature en-
gineering. In the single model performance experiment, XGBoost
and LightGBM exhibited impressive performance on the validation
set but showed a certain overfitting phenomenon in the test data.
Several attempts were made to modify the model’s parameters and
alter the feature engineering configuration, but the aforementioned
issues persisted.
Thereafter, we constructed an ensemble model and a residual

model based on the above model for comparison. For the ensemble
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Fig. 3. Heat map visualization of the distribution of the dataset

Fig. 4. Modeling flow, including single model, ensemble model and residual model

model, the results demonstrate that it does not significantly improve
the prediction performance. Since we only use the simple averaging
strategy in the ensemble model, the relatively poor base model will
reduce the overall performance of the whole ensemble model. For
the residual model, we build multiple models with different stages
and embed different base models for each stage for comparison. As
shown in Table 1, the residual model with 2 stages significantly

outperforms the single model, while the model using all RVM as
stage kernels achieves the best performance in test dataset. We also
tried to add more residual stages to the residual model, but the
results showed that the model performance became worse.
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Table 1. Selected results of single model, ensemble model and residual model

Model Feature Engineering Valid set MAE Test set MAE
Original Feature 5.32 7.54

Feature Combination 4.11 7.22RVR
Feature Combination + Truncated Power Basis Function Expanding 3.96 7.01

Original Feature 7.94 9.72
Feature Combination 7.80 9.26XGBoost

Feature Combination + Truncated Power Basis Function Expanding 7.89 9.33
Original Feature 8.66 9.81

Feature Combination 8.44 9.36LightGBM
Feature Combination + Truncated Power Basis Function Expanding 8.10 9.07

Original Feature 6.89 8.33
Feature Combination 6.27 8.04Ensemble

(RVR + LightGBM) Feature Combination + Truncated Power Basis Function Expanding 6.20 7.98
Original Feature 6.13 8.02

Feature Combination 5.64 7.86Ensemble
(RVR + XGBoost) Feature Combination + Truncated Power Basis Function Expanding 5.44 7.70

Original Feature - 7.01
Feature Combination 3.27 6.84 (Rank 52/530)Residual

(RVR + RVR) Feature Combination + Truncated Power Basis Function Expanding 3.07 6.33

6 CONCLUSION
Based on the results of the aforementioned experiments, several
conclusions can be drawn:

Firstly, it is evident that the ensemble and residual models exhibit
superior performance when compared to their single-model coun-
terparts. However, it is important to note that the number of models
employed does not necessarily have a direct correlation with the
mean absolute error (MAE) score.
Secondly, the original model features are relatively limited. De-

spite the application of various feature engineering techniques to
address the overfitting phenomenon of XGBoost and LightGBM,
this issue remains unresolved.

Finally, it is important to emphasize the vital role played by data
processing and feature engineering in determining the upper limit of
the effect. Although adjusting the model hyperparameters can lead
to some improvement in the prediction effect, it is limited. On the
other hand, utilizing more robust data preprocessing and advanced
feature engineering methods can lead to a significant improvement
in the score.
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