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Fig. 1: An Overview of the Survey: The Lifecycle of the NL2SQL Task.

Abstract—Translating users’ natural language queries (NL)
into SQL queries (i.e., NL2SQL) can significantly reduce barriers
to accessing relational databases and support various commercial
applications. The performance of NL2SQL has been greatly
enhanced with the emergence of Large Language Models (LLMs).
In this survey, we provide a comprehensive review of NL2SQL
techniques powered by LLMs, covering its entire lifecycle from
the following four aspects: (1) Model: NL2SQL translation tech-
niques that tackle not only NL ambiguity and under-specification,
but also properly map NL with database schema and instances;
(2) Data: From the collection of training data, data synthesis
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due to training data scarcity, to NL2SQL benchmarks; (3)
Evaluation: Evaluating NL2SQL methods from multiple angles
using different metrics and granularities; and (4) Error Analysis:
analyzing NL2SQL errors to find the root cause and guiding
NL2SQL models to evolve. Moreover, we provide a rule of thumb
for developing NL2SQL solutions. Finally, we discuss the research
challenges and open problems of NL2SQL in the LLMs era.

Index Terms—Natural Language to SQL, Database Interface,
Large Language Models.

I. INTRODUCTION

ATURAL Language to SQL (i.e.,,NL2SQL), which con-
verts a natural language query (NL) into an SQL query,
is a key technique toward lowering the barrier to accessing
relational databases [I|-[7]. This technique supports various
important applications such as business intelligence, customer
support, and more, making it a key step toward democratiz-
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ing data science [8]-[19]. Recent advancements in language
models have significantly extended the frontiers of research
and application in NL2SQL. Concurrently, the trend among
database vendors to offer NL2SQL solutions has evolved from
a mere notion to a necessary strategy [20]], [21]]. Therefore, it’s
important for us to understand the fundamentals, techniques,
and challenges regarding NL2SQL.

In this survey, we will systematically review recent NL2SQL
techniques through a new framework, as shown in Figure

o NL2SQL with Language Models. We will first re-
view existing NL2SQL solutions from the perspective
of language models, categorizing them into four major
categories (see Figure a)). We will then focus on the
recent advances in Pre-trained Language Models (PLMs)
and Large Language Models (LLMs) for NL2SQL.

o Benchmarks and Training Data Synthesis. Undoubt-
edly, the performance of PLM- and LLM-based NL2SQL
models is highly dependent on the amount and quality of
the training data. Therefore, we will first summarize the
characteristics of existing benchmarks and analyze their
statistical information (e.g., database and query complex-
ity) in detail. We will then discuss methods for collecting
and synthesizing high-quality training data, highlighting
this as a research opportunity (see Figure [T(b)).

o Evaluation. Comprehensively evaluating NL2SQL mod-
els is crucial for optimizing and selecting models for
different usage scenarios. We will discuss the multi-angle
evaluation and scenario-based evaluation for the NL2SQL
task (see Figure c)). For example, performance can be
assessed in specific contexts by filtering datasets based on
SQL characteristics, NL variants, and database domains.

o NL2SQL Error Analysis. Error analysis is essential in
NL2SQL research for identifying model limitations. We
review existing error taxonomies, analyze their limita-
tions, and propose principles for designing taxonomies
for NL2SQL output errors. Using these principles, we cre-
ate a two-level error taxonomy and utilize it to summarize
and analyze NL2SQL output errors (see Figure [T[d)).

Next, we will introduce practical guidance for developing
NL2SQL solutions, including a roadmap we designed for
optimizing LLMs to NL2SQL task, along with a decision flow
we created for selecting NL2SQL modules tailored to different
NL2SQL scenarios. Finally, we will introduce some interesting
and important open problems in the field of NL2SQL, including
open-world NL2SQL tasks, cost-effective NL2SQL with LLMs,
and trustworthy NL2SQL solutions.

Differences from Existing Surveys. Our survey distinguishes
itself from existing NL2SQL surveys [22]-[26] and tutori-
als [27]-[29]] in five aspects.

o We systematically review the entire lifecycle of NL2SQL
problem, as shown in Figure [I] This lifecycle includes
training data collection and synthesis methods (Fig-
ure [I{b)), various NL2SQL translation methodologies
(Figure[I|(a)), multi-angle and scenarios-based evaluations
(Figure [I[c)), and NL2SQL output error analysis tech-
niques (Figure [T[d)).

e We provide a more detailed and comprehensive summary
of the inherent challenges in NL2SQL. Additionally, we
analyze the technical challenges when developing a ro-
bust NL2SQL solution for real-world scenarios, which are
often overlooked in other surveys.

o We particularly focus on recent advances in LLM-based
NL2SQL methods, summarizing key modules and com-
paring different strategies within this scope. We are the
first survey to provide a modular summary of methods
and provide detailed analyses for each key module (e.g.,
database content retrieval).

o We highlight the importance of evaluating NL2SQL meth-
ods in a multi-angle way, analyze the key NL2SQL error
patterns, and provide a two-level error taxonomy.

o We provide practitioners with a roadmap for optimizing
LLMs to NL2SQL task and a decision flow for selecting
the suitable NL2SQL modules for various usage scenarios.

Contributions. We make the following contributions.

e NL2SQL with Language Models. We comprehensively
review existing NL2SQL techniques from a lifecycle per-
spective (Figure[T)). We introduce the NL2SQL task defini-
tion, discuss challenges (Figure[2)), provide a taxonomy of
NL2SQL solutions based on language models (Figure [3)),
and summarize the key modules of language model-
powered NL2SQL solutions (Figure [5 and Table [[). Next,
we elaborate on each module of language model-powered
NL2SQL methods, including the pre-processing strategies
(Section [IV)), NL2SQL translation methods (Section [V)),
and post-processing techniques (Section [VIJ).

o NL2SQL Benchmarks. We review NL2SQL benchmarks
based on their characteristics (Figure [I0). We analyze
each benchmark in-depth and present their statistical
information (Table [lI). (Section [VII)

e NL2SQL Evaluation and Errors Analysis. We highlight
the importance of evaluation in developing practical
NL2SQL solutions. We review widely used evaluation
metrics and toolkits for assessing NL2SQL solutions. We
provide a taxonomy to summarize typical errors produced
by NL2SQL methods. (Section

e Practical Guidance for Developing NL2SQL Solutions.
We provide a roadmap for optimizing existing LLMs to
NL2SQL tasks. (Figure @Ka)). In addition, we design
a decision flow to guide the selection of appropriate
NL2SQL modules for different scenarios (Figure b)).

e Open Problems in NL2SQL. Finally, we discuss new
research opportunities, including the open-world NL2SQL
problem and cost-effective NL2SQL solutions (Section @

o NL2SQL Handbook. We maintain a continuously updated
handbook['] for readers to easily track the latest NL2SQL
techniques in the literature and provide practical guidance
for researchers and practitioners.

II. NL2SQL PROBLEM AND BACKGROUND

In this section, we first formalize the definition of the
NL2SQL task (Section [[I-A]). We then introduce the workflow

INL2SQL Handbook: https:/github.com/HKUSTDial/NL2SQL_Handbook
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of how humans perform the NL2SQL task (Section and
discuss the key challenges (Section [[I-C). Finally, we describe
the evolution of NL2SQL solutions based on the development
of language models (Section |lI-DJ.

A. Problem Formulation

Definition 1 (Natural Language to SQL (NL2SQL)). Natu-
ral Language to SQL (NL2SQL), also known as Text-to-SQL,
is the task of converting natural language queries (NL) into
corresponding SQL queries (SQL) that can be executed on
a relational database (DB). Specifically, given an NL and a
DB, the goal of NL2SQL is to generate an SQL that accurately
reflects the user’s intent and returns the appropriate results
when executed on the database.

Discussion. In some cases, the corresponding SQL to an NL
query may be multiple due to the ambiguity or underspecifi-
cation of the NL, or the ambiguity of the database schema. In
addition, even when the NL, database schema, and database
content are clear and specific, there may still be multiple
equivalent SQLs that can satisfy the given NL query.

B. NL2SQL Human Workflow

When humans, such as Database Administrator (DBA),
perform the NL2SQL task, they first attempt to understand NL,
then examine the database schema and contents, and finally
write the corresponding SQL based on their SQL knowledge.
Next, we will provide a detailed description of this process,
as shown in Figure 2{(a).

Step-1: Natural Language Query Understanding: Given the
NL query “Find the names of all customers who checked out
books on exactly 3 different genres on Labor Day in 2023”,
the first task is to comprehend the user’s intent and identify
the key components of the NL. To this end, the DBA may
first identify some key terms and phrases in the given NL.
For example, in this query, the key terms are: 1) Entities
or Attributes: ‘“names”, “customers”, “books”, and “genres”;
2) Temporal Context: “Labor Day in 2023”; and 3) Specific
Conditions: “exactly 3 different genres”.

Then, the DBA may further understand the overall purpose
of the NL query. In this case, the query intends to retrieve a
list of customer names based on specific borrowing behavior
on a particular date.

Step-2: Schema Linking and DB Content Retrieval: Next, the
DBA examines the database schema and values to identify the
relevant tables, columns, and cell values needed to produce
the SQL. For example, the DBA may determine that the
“Customer” and “Book” tables are relevant based on their
understanding of the NL (see Figure [2fa)-®). The DBA then
decides which columns should be mentioned. For example,
the keyword “genres” can refer to either “LiteraryGenre” or
“SubjectGenre” (see Figure a)—@).

Furthermore, the DBA should interpret “Labor Day in 2023”
based on the context. In the US, “Labor Day in 2023 refers to
“September 4th, 2023, while in China, it refers to “May 1st,
2023”. This judgment involves domain knowledge or available
additional information (see Figure 2{a)-®).

NL Query:

Find the of all customers who checked out books on exactly 3 different
on Labor Day in 2023. /

_/

Datab:ase:
[Customer [Book
[Customerld | [+ ] [Booklid][Title[LiteraryGenre[SubjectGenre] -
! i '@ Novel Magic

[BookOrder N |
|Customerld[Bookid [OrderDate [ |
Additional Information

Cemmemmeeeme- @ --------- )‘01%05%23
®--® Foreign Key

Additional Information: Note that Labor Day stand for May 1

—> Table Linking
Columns Linking
@ ---> Database Content

sQL:

SELECT

FROM Customer

NATURAL JOIN BookOrder
NATURAL JOIN Book

WHERE OrderDate='01/05/23"
GROUP BY CustomerId,
HAVING COUNT(DISTINCT SubjectGenre)=3 HAVING COUNT(DISTINCT SubjectGenre)=3)

SELECT

FROM Customer

WHERE CustomerId = (SELECT CustomerId
FROM BookOrder NATURAL JOIN Book
WHERE OrderDate='01/05/23"

GROUP BY CustomerId

LiteraryGenre LiteraryGenre
(a) An Example of NL2SQL( Ambiguous NL)

NL Query:

Find the of all customers who checked out books on exactly 3 different

on Labor Day in 2023. /

Database:
![Customer [Book |
' [Customerld] [ [Bookld]Title [LiteraryGenre[SubjectGenre] ... |
. ° H Novel Magic
1 [Account X | [BogkOrder |
[Accld[AccName|Password|Customerld| [Bookld | Accld | OrderDate [~ |

May 1st 2023

Additional Information: Note that Labor Day stand for May 1 @

sQL:
SELECT
FROM Customer
NATURAL JOIN Account NATURAL JOIN BookOrder NATURAL JOIN Book
WHERE OrderDate = 'May 1st 2023°'
GROUP BY CustomerId,
HAVING COUNT(DISTINCT SubjectGenre) = 3

(b) An Example of NL2SQL( DB Schema Updated)

Fig. 2: Examples of the NL2sSQL Task and Its Challenges.

Step-3: Translating the NL Intent into the SQL: Finally, the
DBA writes the corresponding SQL based on their understand-
ing of the NL and the results of schema linking and database
content retrieval. This process, known as “NL2SQL Transla-
tion”, requires the DBA to leverage their SQL knowledge
and understanding of database concepts. However, this process
can be very challenging due to the ambiguity of the NL or
the complexity of the database. For example, as illustrated
in Figure [2(a), despite understanding the need to link the
Customer and Book tables, one must be familiar with the usage
and norms of employing either a natural join or a subquery.
Additionally, there may be multiple corresponding SQL queries
because “genres” can refer to either “LiteraryGenre” or “Sub-
jectGenre”.

C. NL2SQL Task Challenges

As mentioned in Section [[I-B] there are three key steps
in the NL2SQL task. From these steps, we can identify three
inherent challenges: the uncertainty of the natural language,
the complexity of the database, and the translation from the
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“free-form” natural language queries to the “constrained and
formal” SQL queries.

In this section, we will discuss these fundamental challenges
of the NL2SQL task. We will then analyze the technical
challenges, i.e., the challenges we face when developing a
strong NL2SQL solution in real-world scenarios.

C1: The Uncertain Natural Language Query. Natural lan-
guage often contains uncertainties due to ambiguity and un-
derspecification [30]. In NL2SQL tasks, the challenges related
to NL can be summarized as follows:

e Lexical Ambiguity: This occurs when a single word has
multiple meanings. For example, the word “bat” can refer
to an animal or a baseball bat (noun) or the action of
swinging (verb).

o Syntactic Ambiguity: This occurs when a sentence can
be parsed in multiple ways. For example, in the sentence
“Mary saw the man with the telescope”, the phrase “with
the telescope” can mean either that Mary used a telescope
to see the man or that the man had a telescope.

e Underspecification: This occurs when linguistic expres-
sions lack sufficient detail to convey specific intentions
or meanings clearly. For example, “Labor Day in 2023”
refers to September 4th in the US but May 1st in China.

e User Mistakes: Spelling mistakes and grammatical errors
significantly increase the complexity of natural language
understanding.

C2: The Complex Database and Dirty Content. The
NL2SQL task requires an in-depth understanding of the
database schema, including table names, column names, and
the interrelations between tables, as well as the database con-
text involving the attributes and values of data. The complexity
of modern database schema and the vast volume of data
present substantial challenges to the effective operation of
NL2SQL tasks. These complexities include:

o Complex Relationships Among Numerous Tables: A
database can include hundreds of tables interconnected
through complex relationships. NL2SQL systems must
be able to understand and utilize these relationships
accurately when generating SQL queries.

e Similarity in Column Names: Managing columns with
similar names across different tables is a common chal-
lenge in the NL2SQL task. For example, a database might
contain multiple tables each with a column named “date”,
where one might represent the ‘“creation date” while
another might represent the “expiration date”.

e Domain-Specific Schema Variations: Different fields may
have unique database designs, which means an NL2SQL
system must adapt to each specific schema’s difference,
making generic solutions challenging. For example, table
and column names are often expressed using abbrevia-
tions or vague expressions in the finance domain.

o Large and Dirty Values: In the context of large databases,
handling the immense volume of data efficiently is es-
sential, as it is impractical to use all data as input.
The system must focus on effectively extracting and
formatting relevant data from queries to meet database
requirements. In addition, it’s crucial for the system to

have fault tolerance capabilities to manage and mitigate
errors or inconsistencies present in real-world databases,
ensuring the reliability and accuracy of the query outputs.

C3: NL2SQL Translation. The NL2SQL task differs from
the compilation of a high-level programming language to
a low-level machine language, as it usually has a one-fo-
many mapping between the input NL and output SQL queries.
Specifically, the NL2SQL task faces several unique challenges:

o Free-form NL vs. Constrained and Formal SQL: the SQL
queries follow a strict syntax, whereas natural language
is more flexible and varied. Translating NL queries into
corresponding SQL queries requires adherence to SQL
syntax rules to ensure they are executable.

e Multiple Possible SQL Queries: a single NL query can
correspond to multiple SQL queries that satisfy the re-
quirements, leading to ambiguity in determining appro-
priate SQL translation (see the example in Figure a)).

e Database Schema Dependency: the NL2SQL translation
process is significantly dependent on the database schema
it interacts with. As shown in Figure[2](a) and (b), for the
same NL query (intent), a change in the database schema
will correspond to different SQL queries. This requires
NL2SQL solutions to dynamically adapt their translations
to different databases.

Beyond the above intrinsic challenges of translating natural
language queries to SQL, developers must also navigate several
technical obstacles to build reliable and efficient NL2SQL
systems. Next, we will discuss several technical challenges
that need to be addressed to develop strong NL2SQL solutions.

Technical Challenges in Developing NL2SQL Solutions.
Developing robust NL2SQL solutions involves addressing sev-
eral technical challenges. These include:

e Efficiency of the Model: Ensuring the model can process
natural language queries and convert them to SQL effi-
ciently, minimizing latency. This consideration is crucial
as efficiency directly impacts user experience and opera-
tional costs, especially in scenarios requiring low latency.

e Efficiency of SOL: The SQL generated by NL2SQL mod-
els need to be not only correct but also optimized for
performance. This involves optimization in the selection
of joins, indexes, and query structures. Efficient queries
reduce the load on databases, enhancing the system’s
responsiveness and throughput.

o Cost-effective Solution: Deploying NL2SQL models, es-
pecially those using large language models, requires
significant resources, including hardware and API costs.
These models are expensive to run and can consume a
lot of cost (such as energy and monetary cost). Efficient
resource management is crucial to keep operational costs
down and reduce environmental impact.

o Insufficient and Noisy Training Data: Acquiring high-
quality NL2SQL training data is extremely challenging.
The limited amount of publicly available training data is
often insufficient for training robust models. Additionally,
the quality of this data is frequently compromised by
noisy annotations. Annotators need database knowledge,
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Single-table SQL Multi-table SQL
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Multiple Tables with
Complex Schema

Advanced SQL Feature
Support

Massive Tables and Values Real-world Databases

Adapting to Changed
Schema

Efficient SQL Generation
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(b) The Evolution of NL2SQL Solutions

Fig. 3: The Evolution of NL2SQL Solutions from the Perspective of Language Models.

which increases costs, and the complexity of the NL2SQL
task often leads to errors, for example, in the Spider
dataset [31]], which required around 1100 hours of human
labor to annotate about 11K (NL, SQL) pairs. However, it
was subsequently identified that about 4% of the pairs had
annotation errors, requiring additional annotation efforts
to correct them.

e Data Privacy: Data privacy is crucial for NL2SQL sys-
tems, especially when the databases contain sensitive
data. Using cloud-based APIs like GPT-4 increases pri-
vacy risks, as it involves sending data to external servers.

o Trustworthiness and Reliability: For NL2SQL models to
be widely used, they need to be trustworthy and reli-
able. This means they must consistently produce accurate
results across different datasets and use cases. Trust-
worthiness also requires that the model’s decisions are
transparent. This allows users to understand and check
the SQL it generates. For example, using explainable Al
to show how decisions are made and developing strong
evaluation metrics to assess accuracy.

D. Challenges Solving with Large Language Models

The evolution of NL2SQL technology has been marked by
substantial advancements over the years, driven primarily by
progress in Natural Language Processing (NLP).

In Figure [3a), we categorize the challenges of NL2SQL into
five levels and define each level’s specific challenges. The first
three levels focus on challenges that have been addressed or
are still being tackled, affirming the progressive development
of NL2SQL. The fourth level symbolizes the challenges we aim
to resolve in the LLMs stage. Finally, the fifth level represents
our aspirations for the ultimate NL2SQL system.

PLM Pre-train/Fine-tune .
7
Pre-train/Fine-tune\ [RYENE:]
d NL2sQL
LLM J Prompt \
J

' ]
SQL

Fig. 4: The Categorization of PLM and LLM in NL2SQL.

In Figure [3[b), we describe the evolution of NL2SQL solu-
tions from the perspective of language models, categorizing
it into four stages: the rule-based stage, the neural network-
based stage, the PLM-based stage, and the LLM-based stage.
For each stage of NL2SQL, we analyze the changes in target
users and the extent to which challenges are addressed.

Remark: PLM vs. LLM. Figure | illustrates the differences
between LLMs and PLMs. The LLMs are a type of PLMs char-
acterized by superior language understanding and emergent
capabilities [32)], [33]]. These emergent capabilities enable it
to perform NL2SQL tasks using prompts. However, employing
PLMs for NL2SQL tasks typically requires pre-training or fine-
tuning to achieve similar performance.

1) Rule-based Stage: In the early stages of NL2SQL tech-
nology development, research primarily focused on rule-based
methods. These methods [30], [34]-[36] utilized predefined
rules or semantic parsers to understand natural language
queries and convert them into SQL queries. For example,
NaLIR [35] utilizes a syntactic parser to understand the NL
query and link it to database elements. Next, it relies on
manually crafted rules to generate the corresponding SQL
query. However, rule-based methods have limitations in terms
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of adaptability, scalability, and generalization capabilities. At
this stage, natural language understanding is limited to the
token level, and research focuses on single-table databases.
(see Figure [3[b)-®)

2) Neural Network-based Stage: To alleviate these limita-
tions, researchers turned to leveraging neural networks to solve
the NL2SQL task. Methods based on sequence-to-sequence
models or graph neural networks (GNNs) are developed [37]-
[39]. For example, given the various expressions possible in
the WHERE clause of SQL queries, Seq2SQL [40] employs
a reinforcement learning approach for partial training of this
clause. This method trains the aggregation functions and
SELECT clause using cross-entropy loss while employing a
reward function to train the WHERE clause. Addressing the
potential challenges of reinforcement learning, SQLNET [41]]
proposes a query skeleton technique using fixed slots, trans-
forming the problem into a classification task. However, the
generalization ability of these methods is limited by the model
size and the amount of training data. At this stage, natural
language understanding has advanced with the development of
neural networks, not only handling synonyms and synonymous
phrases but even beginning to comprehend simple text. Conse-
quently, the research focus shifted from single-table databases
like WikiSQL [40] to more complex databases like Spider [|31]]
that involve multiple tables. (see Figure b)—@)

3) PLM-based Stage: With the introduction of PLMs such
as BERT [42] and T5 [43] in 2018, NL2SQL methods based
on PLMs [7]], [44], [45] have achieved competitive perfor-
mance on various benchmark datasets. These models brought
significant advancements in natural language understanding
and generation, enabling more accurate and efficient NL2SQL
translation. In this stage, fine-tuning the PLMs is often re-
quired to adapt to NL2SQL tasks. For example, Graphix-
TS5 [44] is a hybrid model that combines a conventional
pre-trained transformer architecture with custom graph-aware
layers designed to enhance its performance on tasks involv-
ing graph-structured data. However, these models still face
challenges in handling complex database schema and often
require specific training for NL2SQL tasks. At this stage, PLMs
trained on extensive corpora have further enhanced natural
language understanding capabilities, successfully resolving ap-
proximately 80% of the cases in the Spider database. However,
when addressing external hard-level cases, the accuracy is only
around 50% [46] (see Figure [3[b)-®).

4) LLM-based Stage: LLMs demonstrate unique emergent
capabilities, which enable LLMs to surpass traditional PLMs
in NLP tasks. This development has also triggered a new
wave of solutions for the NL2SQL task. These LLM-based
NL2SQL methods have become the most representative solu-
tions in the current NL2SQL landscape [S]], [6l, [47], [48].
Current optimizations primarily focus on prompt design [6]]
and training LLMs [47]]. DAIL-SQL [6] utilizes the GPT-
4 model through effective prompt engineering techniques
and has achieved competitive results on the Spider dataset.
CodeS [47] is making attempts to create language models
specifically for the NL2SQL task. By incrementally pretraining
on StarCoder [49] with a large corpus related to NL2SQL tasks,
CodeS has shown exceptional performance across numerous

challenging NL2SQL benchmarks. At this stage, the emergence
of emergent capabilities has significantly enhanced natural
language understanding. Consequently, the focus of challenges
has shifted more towards the database layer. The introduction
of benchmarks like Bird [50] and Bull [48] reflects a height-
ened interest in addressing NL2SQL solutions under conditions
of massive tables and values, as well as designing NL2SQL
solutions for specific domains (see Figure b)-@).

Although the LLM-based NL2SQL methods are still in
their early phases, they have already demonstrated impressive
performance. This not only validates the effectiveness of these
models but also highlights the immense potential of this
approach. With continuous advancements and optimization of
the LLM-based methods, we believe these methods will be
able to address more complex issues in practical applications.

NL2SQL Solution in the Era of LLMs. Broadly speaking,
there are two major approaches to leverage the capabilities
of LLMs for NL2SQL: 1) in-context learning, and 2) pre-
train/fine-tune LLMs specialized for NL2SQL.

In-Context Learning for NL2SQL. For in-context learning

NL2SQL methods, the goal is to optimize the prompt function
P to guide the LLMs, which can be formulated as follows:

Frim(P | NL,DB,K) — SQL,

where K denotes additional information or domain-specific
knowledge related to NL or DB. P is a prompt function that
transforms the input (NL, DB, K) into a suitable fextual prompt
for the LLMs. An appropriately designed P can effectively
guide the LLMs to perform the NL2SQL task more accurately.

Employing in-context learning strategies for NL2SQL does
not involve optimizing the parameters of the LLMs, thereby
treating the LLMs as off-the-shelf tools. If the user has
sufficient training data or hardware resources to calibrate the
parameters of the LLMs, model performance and accuracy
can be enhanced by tailoring it more closely to the specific
NL2SQL task.
Pre-train and Fine-tune LLMs for NL2SQL. Fully optimizing
the parameters of LLMs for NL2SQL tasks involves two critical
stages: pre-train and fine-tune, which can be formulated as
follows:

LLM" = Fine-tune (Fpre-train(LLM, Dyy), Dyy)

During pre-train, the LLM is trained on a large-scale and
diverse dataset D, that includes a broad range of linguistic
patterns and domain-general knowledge, enabling the model
to develop robust understanding capabilities.

In the subsequent fine-tuning stage, the pre-trained model
is further adjusted on a more specialized dataset D, which is
closely aligned with the NL2SQL task. This targeted training
refines the model’s capabilities, enabling it to more effectively
interpret and generate SQL based on natural language queries.

III. LANGUAGE MODEL-POWERED NL2SQL OVERVIEW

We summarize the key modules of NL2SQL solutions
utilizing language models, especially PLMs and LLMs, as
illustrated in Figure [5] Additionally, we compare the key
module differences of existing NL2SQL solutions in Table [I|
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A. Pre-Processing

Pre-processing serves as an enhancement to the model’s
inputs in the NL2SQL parsing process. Although not strictly
necessary, pre-processing significantly contributes to the re-
finement of NL2SQL parsing [51].

o Schema Linking: This key module identifies the most rel-
evant tables and columns from NL2SQL (Section [[V-A).

o Database Content Retrieval: This key module accesses
the appropriate database contents or cell values needed
for formulating SQL (Section [[V-B).

o Additional Information Acquisition: This key module
enriches the contextual backdrop by integrating domain-
specific knowledge (Section [[V-C).

B. NL2SQL Translation Methods

NL2SQL translation methods constitute the core of the
NL2SQL solution, responsible for converting input natural
language queries into SQL queries. Existing methods relevant
to NL2SQL translation can be summarized as follows:

e Encoding Strategy: This key module converts the input
NL and database schema into an internal representation,
capturing the semantic and structural information of the
input data (Section [V-A).

o Decoding Strategy: This key module transforms the in-
ternal representation into SQL queries (Section [V-B).

o Task-specific Prompt Strategy: This module provides
tailored guidance for the NL2SQL model, optimizing the
NL2SQL translation workflow (Section [V-C).

o Intermediate Representation for NL2SQL Translation:
This module serves as a bridge between NL and SQL
translation, providing a structured approach to abstract,
align, and optimize NL understanding, simplify complex
reasoning, and guide the generation of accurate SQL

queries (Section [V-D).

C. Post-Processing

Post-processing is a crucial step to refine the generated SQL
queries, ensuring they meet user expectations more accurately.
This involves enhancing the initial SQL output using various
strategies, as discussed below.

e SQL Correction Strategies: This module aims to iden-
tify and correct syntax errors in generated SQL queries.
(Section [VI-A).

o Output Consistency: This module ensures the uniformity
of SQL queries by sampling multiple reasoning results
and selecting the most consistent result. (Section [VI-B).

o Execution-Guided Strategies: This module uses the exe-
cution results of SQL queries to guide subsequent refine-
ments. (Section [VI-C).

o N-best Rankers Strategies: N-best re-ranking strategies
reorder the top results from the model to improve query
accuracy. (Section [VI-D).
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IV. PRE-PROCESSING STRATEGIES FOR NL2SQL

The pre-processing step is crucial for the NL2SQL transla-
tion process because it identifies the most relevant tables and
columns (i.e., Schema Linking) and retrieves suitable database
contents/cell values (i.e, DB Content Retrieval) used for
generating SQL queries in advance. What’s more, it enriches
context by adding domain-specific knowledge (i.e., Additional
Information Acquisition), enhances efficiency by focusing on
relevant data, improves the understanding of the query context,
and corrects errors to prevent their propagation.

A. Schema Linking

The purpose of the schema linking is to identify the tables
and columns related to the given NL query. It ensures the
accurate mapping and processing of key information within
the limited input, thereby improving the performance of the
NL2SQL task. In the LLMs era, schema linking has become
increasingly crucial due to the input length limit of LLMs.

We categorize existing schema-linking strategies into three
groups based on their characteristics: /) string matching-based
methods, 2) neural network-based methods, and 3) in-context
learning-based for schema linking.

1) String Matching-based Schema Linking: Early re-
search [38]], [[78]], [79] primarily concentrated on string match-
ing. String matching-based schema linking utilizes similarity
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measures between the text in the NL and the schema el-
ements (e.g., table and column names) to identify relevant
mappings. These methods rely on exact or approximate match-
ing techniques to align the NL with the database schema,
ensuring that the query components are correctly associated
with the corresponding database elements. Exact matching,
as employed by IRNet [78]], is the simplest approach for
identifying matches. An exact match requires candidates to
be identical, while a partial match occurs when one candidate
is a substring of the other. This method can uncover obvious
links but may result in false positives when candidates share
common words. Approximate string matching, such as the
Damerau-Levenshtein distance [80] used by ValueNet [81],
is another useful technique. It helps identify matches with
different spellings or spelling mistakes. However, this methods
lack the ability to handle synonyms and is not robust to
variations in vocabulary.

2) Neural Network-based Schema Linking: To alleviate the
limitations of traditional string matching-based methods, some
researchers employ deep neural networks to match database
schema with natural language queries [7]], [51], [74]], [82].
These approaches effectively parse complex semantic relation-
ships between language and database structures.

DAE [82]] formulates schema linking as a sequential tag-
ging problem and proposes a two-stage anonymization model
to learn the semantic relationship between schema and NL.
However, DAE does not demonstrate how schema linking
impacts the performance of NL2SQL tasks, as the lack of an
annotated corpus. To address this, SLSQL [51] annotates the
schema linking information for each instance in the training
and development sets of Spider [31]] to support a data-driven
and systematic study. With the advent of the transformer,
researchers start to explore the use of attention mechanisms
and PLMs for schema linking. RAT-SQL [74]] employs a
relation-aware self-attention mechanism to integrate global
reasoning across schema entities and question terms with
structured reasoning based on predefined schema relation-
ships. RESDSQL [7] proposes a ranking-enhanced encoding
framework for schema linking. An additional cross-encoder
is trained to classify tables and columns based on the input
query. This framework ranks and filters them according to
classification probabilities, resulting in a ranked sequence of
schema items.

However, neural network-based schema linking methods
often struggle to generalize effectively across databases with
significantly different schema or domains, especially when
training data are limited.

3) In-Context Learning for Schema Linking: With the ad-
vancement of LLMs such as GPT-4, existing research aims
to harness the strong reasoning capabilities of LLMs for
schema linking, i.e., directly identifying and linking relevant
database schema components from the NL query. One im-
portant technique is to utilize the In-Context Learning (ICL)
technique [83]].

This approach leverages the capability of LLMs to under-
stand and process complex language patterns and relationships
within the data schema, facilitating a more dynamic and
flexible schema linking process [S]], [52], [60]], [64], [84].

DIN-SQL [5] designs a prompt-based module for schema
linking. The prompt comprises ten randomly chosen samples
from the training set of the Spider and follows the Chain-
of-Thought [[85] strategy. For each column mentioned in the
NL, the corresponding columns and their tables are selected
from the database schema. C3 [60]] designs different zero-
shot prompts to instruct GPT-3.5 for table and column linking,
employing the self-consistency method. For the table linking,
the prompt guides the process in three steps: ranking tables by
relevance, ensuring all relevant tables are included, and out-
putting in list format. For the column linking, another prompt
guides the ranking of columns within candidate tables and
outputting in dictionary format, prioritizing those matching
question terms or foreign keys. Similarly, MCS-SQL [84]]
also performs schema linking in two steps involving table
linking and column linking. However, MCS-SQL distinguishes
itself by utilizing multiple prompts in both steps to maximize
recall. MAC-SQL [64] propose a multi-agent collaborative
framework for NL2SQL. The Selector agent performs the
schema linking task. The Selector is activated only when the
length of the database schema prompt exceeds a specified
threshold. CHESS [52] utilizes GPT-4 to extract keywords
from both NL and Evidence (additional information provided
by BIRD [50]). By designing different prompts, it implements
an efficient three-stage schema pruning protocol.

Employing ICL for schema linking has demonstrated com-
mendable performance. However, it is important to note that
LLMs face inherent limitations in the length of context they
can process. Complex schema with many tables and columns
may exceed this limitation. In addition, the effectiveness of
ICL is heavily dependent on the quality of the prompts.

B. Database Content Retrieval

The purpose of database content retrieval is to efficiently
retrieve cell values through textual searching algorithms and
database indexing. Unlike schema linking, which focuses on
finding relevant tables and columns based on the NL query,
database content retrieval emphasizes efficiently retrieving cell
values. Given the large scale of databases, retrieving cell
values from them is resource-intensive and poses potential
risks of exposing sensitive data [77]. Therefore, it is crucial to
implement appropriate strategies for the scenario requirement.

We categorize existing database content retrieval strategies
into three groups based on their characteristics: 1) String
Matching-based Methods, 2) Neural Network-based Methods,
and 3) Index Strategy for Database Content Retrieval.

1) String Matching-based Methods: String matching-based
methods are used to find and compare sequences of cell values
related to the given NL query through string matching.

IRNet [78|] uses the n-grams method and regards those
begin and end with quotes as cell values. Besides n-grams,
ValueNet [81] implements two other methods for generating
candidate cell values based on string similarity and heuristic
selection. RESDSQL [7]], Graphix-T5 [44], and PICARD [71]
use the Longest Common Substring algorithm [86], which
determines the maximum length sequence of characters that
appear in each given string.
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Further advancing this approach, BRIDGE [77]] designs an
anchor text matching to extract cell values mentioned in the
NL automatically. It uses a heuristic method to calculate the
maximum sequence match between the problem and the cell
values to determine the matching boundary. When the cell
values are substrings of words in the query, the heuristic can
exclude those string matches. The matching threshold is then
adjusted by making coarse accuracy measurements.

Building on the concepts introduced by BRIDGE, vari-
ous frameworks such as RESDSQL [7]], RASAT [70], Su-
perSQL [46]], and SmBoP [75] follow the same database
content module as BRIDGE [77]. While string matching-
based methods are direct and effective, they face challenges
such as dealing with synonyms. In addition, when there is a
large amount of database content, the high computational cost
cannot be ignored.

2) Neural Network-based Methods: Neural networks can
learn complex data formats and semantic representations
through multiple layers of nonlinear transformations to capture
semantic features, thus alleviating the synonym issues.

TABERT [|87] utilizes a method called database content
snapshots to encode the relevant subset of database content
corresponding to the NL query. It uses an attention mechanism
to manage information between cell value representations
across different rows. Another common approach is leveraging
the relationships in graphs to represent database content. For
example, IRNet [78]] employs the knowledge graph Concept-
Net [88] to recognize cell value links and search cell value
candidates in the knowledge graph. When a result exactly or
partially matches a cell value, the column is assigned a type
of value exact match or partial match, respectively.

RAT-SQL [74] further improves structural reasoning ca-
pabilities by modeling the relationship between cell values
and the NL query. Specifically, it identifies the column-value
relationship, meaning that the value in the question is part
of the candidate cell value of the column. Graphix-T5 [44]]
and LGESQL [89] use a value-match relation, which defines
the relationship between cell values and questions similarly to
RAT-SQL.

Despite their ability to capture semantic features, these
methods might still struggle with ambiguous or context-
dependent NL, potentially leading to inaccurate cell value
retrieval. In addition, the complexity of neural network archi-
tectures would demand substantial computational resources.

3) Index Strategy for Database Content Retrieval: Effi-
ciently retrieving relevant cell values from a database is crucial
for the performance of NL2SQL systems, especially when
dealing with large datasets. Therefore, existing research has
employed indexing as a crucial method for improving the
efficiency of database content retrieval, as it allows faster
access to relevant cell values [47], [52].

CHESS [52] utilizes a Locality-sensitive Hashing algo-
rithm [90] for approximate nearest neighbor searches. It in-
dexes unique cell values to quickly identify the top similar
values related to the NL query. This approach significantly
speeds up the process of computing the edit distance and
semantic embedding between the NL query and cell values.

CodeS [47] introduces a coarse-to-fine cell value matching
approach. It leverages indexes for a coarse-grained initial
search, followed by a fine-grained matching process. First,
it builds the index for all values using BM25 [91]. The
index identifies candidate values relevant to NL. The Longest
Common Substring algorithm [86] is then used to calculate
the matching degree between NL and the candidate values to
find the most relevant cell values.

While indexing strategies can significantly enhance the
efficiency of searching for relevant cell values, they also have
limitations. Index building requires an investment of time, and
if the cell values in the database change frequently, the index
must be continuously updated, introducing additional inference
overhead.

C. Additional Information Acquisition

Additional information (e.g., domain knowledge) plays an
essential role in improving the comprehension capabilities of
NL2SQL models for understanding the NL query, performing
the schema linking, and benefiting the NL2SQL translation.
This information can provide demonstration examples, domain
knowledge, formulaic evidence, and format information for
the NL2SQL backbone model or specific modules, thereby
enhancing the quality of the generated results.

With the advancement of LLMs and in-context learning
techniques, researchers often incorporate additional informa-
tion as part of the textual inputs (prompts) along with few-
shot examples. For example, DIN-SQL [35] inserts additional
information through few-shot learning across multiple stages
of the workflow, such as schema linking, query classification,
task decomposition, and self-correction. These stages allow
DIN-SQL to effectively tackle various challenges, including
the complexity of schema links, identification of multiple table
joins, and handling of nested queries. Similarly, CodeS [47]]
utilizes metadata examples of cross-domain databases as the
main additional information, including data types and anno-
tation text, which help the model resolve potential ambiguity
issues and understand entity relationships. This extracted infor-
mation is transformed into coherent text and concatenated with
the question query to form the final input context. Other works
that use similar additional information acquisition strategies
include ODIS [63] and CHESS [52].

However, due to the large scale of domain knowledge bases
and human-built examples, retrieving matching knowledge and
suitable few-shot samples from the candidate pool greatly
increases the usage of tokens, impacting inference efficiency
and computational cost [5]], [6]]. To overcome these challenges
and improve the accuracy and efficiency of information re-
trieval, some researchers apply similarity-based information
retrieval mechanisms for additional information acquisition.
For example, PET-SQL [55]] constructs a pool of examples
from the training set, which contains question frames and
question-SQL pairs. Then, it selects the k examples that are
most similar to the target question. These selected examples
are combined with customized prompts as the final input.

Further refining this approach, DAIL-SQL [6] intricately
designs a two-stage representation algorithm for additional
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information. It begins by presenting the question and database
as SQL statement hints, thereby providing comprehensive
database information. Following this, it employs a masking
mechanism and similarity calculation to select appropriate
examples and systematically organizes tags to enhance the
efficiency of the algorithm. Building on this, SuperSQL [46]]
extends the representation algorithm of the DAIL-SQL by inte-
grating similarity-based sample selection with schema linking
and database content information, which filters out irrelevant
schema, thereby enhancing the quality of SQL generation.

In addition to these methods, databases from real-world
scenarios usually comprise a large amount of cross-domain
knowledge or evidence. For example, BIRD [50] contains
knowledge obtained from 95 databases and 37 specialized
domains derived from real-life scenarios. This additional in-
formation plays an important role in the related NL2SQL
studies [5], [6], [46], [47], [52], [53], [64].

Some other databases do not directly provide the cor-
responding additional information text, which requires re-
searchers to develop extraction mechanisms to retrieve this
information and convert it into natural language text. For
example, REGROUP [92] constructs a formulaic knowledge
base encompassing various domains, such as finance, real
estate, and transportation. It leverages a Dense Passage Re-
triever (DPR) [93]] to compute similarity scores for the retrieval
results from the formulaic knowledge base. Subsequently, an
Erasing-Then-Awakening (ETA) model is used to integrate
the entities in these formulaic knowledge items with the
entities in NL and schema. This model filters irrelevant entities
below a confidence threshold and maps the remainder to
schema elements, thereby grounding knowledge for accurate
SQL query generation. ReBoost [94] engages with the LLMs
model using the Explain-Squeeze Schema Linking mecha-
nism. This mechanism is a two-phase strategy. Initially, it
presents a generalized schema to the LLMs to establish a
foundational understanding. Subsequently, it employs targeted
prompting to elicit detailed associations between query phrases
and specific database entities, thereby enhancing accuracy
in mapping queries to database structures without incurring
excessive token costs. ODIS [63]] proposes a SimSQL method
to retrieve additional knowledge from cross-domain databases.
This method utilizes the BM25 algorithm to measure the
resemblance in SQL keywords and schema tokens. The top
examples from each database are selected as the demonstra-
tions that closely align with target SQL.

While retrieval methods have improved the efficiency and
effectiveness of additional information acquisition, the as-
sociated increase in computational cost cannot be ignored.
Reducing the computational cost of selecting and embedding
additional information remains a significant challenge. More-
over, current studies typically use domain-specific knowledge
in the form of text sentences as the main additional informa-
tion, with insufficient exploration of formulated or structured
domain knowledge bases. Further integration of multiple forms
of additional information can enhance the performance of
NL2SQL models on more domain-specific databases.

V. NL2SQL TRANSLATION METHODS

In this section, we delve into NL2SQL translation methods
using language models. As shown in Figure [6] we will elabo-
rate on their encoding (Section , decoding (Section [V-B)),
and task-specific prompt strategies (Section [V-C). We will
then discuss how intermediate representations can benefit the
NL2SQL translation process (Section [V-DJ.

A. Encoding Strategy

Encoding in the NL2SQL task refers to the process of
transforming NL and database schema into a structured format
that can be effectively utilized by a language model. This
transformation is crucial as it converts unstructured and semi-
structured data into a form that can be processed for generating
SQL queries. The encoding process involves capturing the se-
mantic meaning of the NL input and the structural information
of the database schema, enabling the model to understand and
map the user’s intent to the corresponding SQL query.

There are three primary encoding strategies in NL2SQL
models, as shown in Figure[7] each with its unique approach to
transforming NL and database schema: /) sequential encoding,
2) graph-based encoding, and 3) separate encoding.

1) Sequential Encoding Strategy: Sequential encoding is
one of the primary strategies used in NL2SQL models, where
both the NL and the database schema are treated as se-
quences of tokens. The key idea is to linearize the input
data, enabling sequence-based models to capture semantic
and syntactic information effectively. For example, several
works [61]], [71] employ the TS model [43]] to encode the input
NL and database schema in order. This line of work includes
T5+NatSQL+Token Preprocessing [61], TS+PICARD [71],
and others.

BRIDGE [77] enhances the alignment between text and the
database schema by representing the NL question and database
schema as a tagged sequence and inserting matched database
cell values (anchor texts) after the corresponding fields. Simi-
larly, N-best List Rerankers [[69]] appends database content to
column names to enhance the model’s serialization scheme.
RESDSQL [7] uses a ranking-enhanced encoder to sort and
filter schema items, thereby reducing the complexity of schema
linking during encoding. This method ensures that the most
relevant schema items are prioritized, improving the overall
efficiency of the encoding process. CatSQL [65] utilizes the
pre-trained GraPPa encoding network [36] to concatenate
the NL, database schema, and additional information into a
single input sequence, generating hidden state sequences. This
approach integrates multiple sources of information, enhancing
the model’s ability to capture complex relationships.

Although LLM-based NL2SQL methods do not explicitly
employ an input encoding strategy, most of the LLMs rely on
process input sequences through the self-attention mechanism.
This mechanism can also be considered a form of the encoding
process, generating the next word in a sequence based on the
preceding words. Therefore, in this line of research, MAC-
SQL [64]], SuperSQL [46], C3-SQL [60], DAIL-SQL [6], DIN-
SQL [5]l, PET-SQL [55]], CodeS [47]], and DTS-SQL [53]
employ the sequential encoding strategy.
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The sequential encoding strategy is simple and intuitive,
but its linear approach, which treats all inputs as sequences
of tokens, may fail to fully capture the complex relationships
between the database schema and NL query. This can affect the
model’s ability to understand and generate complex queries.

2) Graph-based Encoding Strategy: Graph-based Encoding
is a sophisticated strategy used in NL2SQL models where both
the NL and the database schema are represented as graphs.
This approach leverages the inherent relational structure of
databases and the complex inter-dependencies in the input
data [36], [44]], [66], [68], [70], [73]-[76]. Compared to se-
quential encoding methods, graph-based encoding approaches
preserve the original database schema’s topology, providing
a richer context for each element, which can enhance the
performance of the model in generating accurate SQL queries.

RAT-SQL [74] introduces a relation-aware self-attention
mechanism, allowing the model to explicitly consider and
utilize predefined relational information when jointly encoding
the question and the database schema. These relationships are
represented as a graph structure, and through this graph-based
encoding, RAT-SQL can more effectively capture the structural
information in the schema and its alignment with the NL query.

Building on the RAT-SQL encoder, SmBoP+GraPPa [75]
employs the GraPPa [36] pre-trained model to jointly encode
the NL query and database schema. Similarly, RaSaP [76]
combines the ELECTRA pre-training model and enhances
joint encoding effectiveness based on the RAT-SQL encoder.

Using ELECTRA as its pre-trained language model,
S2SQL [73]] enhances encoding by injecting syntactic structure
information at the encoding stage, improving the semantic
understanding and generation of models. G3R [67]] introduces
the LGESQL encoder, which captures and integrates multi-
source heterogeneous information by constructing and utiliz-
ing a heterogeneous graph and a Graph Attention Network
(GAT) [101]], thereby enhancing the representation capability
for NL and database schema. RASAT [70] augments the self-
attention mechanism in the TS5 model with relation-aware
self-attention, which can incorporate a variety of relational
structures while inheriting pre-trained parameters from the
T5 model [43]. SHiP [68] leverages strong typing encoding
and key relationship encoding to enhance the representation
capability of the input information during the encoding phase.
SQLformer [66] introduces learnable table and column em-
beddings to select the most relevant tables and columns in the
context of the database schema. The Graphix-TS5 model [44]]
introduces graph-aware layers allowing the model to incorpo-
rate structural information directly into the encoding process,
significantly improves the model’s ability to understand and
generate SQL queries that correctly reflect the structure of
the database, and achieves better results on multiple NL2SQL
benchmarks.

The graph-based encoding strategy can effectively express
the complex relationships between input data, enabling the
model to more accurately understand and generate complex
SQL queries involving multiple relationships and conditions.
However, this approach requires more sophisticated algorithms
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for constructing and processing graph structures and may need
a large amount of training data to fully leverage its structural
advantages, making it potentially less suitable for scenarios
with limited training data.

3) Separate Encoding Strategy: Separate encoding strategy
is an approach in NL2SQL models where different parts of the
NL (such as clauses and conditions) are encoded separately and
then combined to form the final SQL. These separate encodings
are then combined at a later stage to generate the final SQL.

Early works encode the NL query and database schema
separately, such as SQLNet [41]] and Seq2SQL [40]. The main
reason for using separate encoding in early models was the
format mismatch between NL and database schema, which
necessitated separate encoding. This approach is not conducive
to schema linking and is therefore rarely used nowadays.
However, separate encoding allows for specialized processing
of different types of input data, leveraging the strengths of
various encoding techniques.

Based on the pre-trained TS model, TKK [72] employs task
decomposition and multi-task learning strategies in encoding
by breaking down the complex NL2SQL task into multiple
subtasks and progressively acquiring and combining knowl-
edge. Similarly, SC-Prompt [1]] divides text encoding into two
stages: the structure stage and the content stage, with each
stage being encoded separately.

While the separate encoding strategy requires multiple pro-
cessing of input data, which may extend the training and infer-
ence time of the model, it allows for more refined handling and
understanding of different aspects of queries. This provides the
model with the flexibility to handle various query tasks and
allows for the adjustment of encoding strategies at different
stages based on the needs of the task, thereby enhancing
overall performance.

B. Decoding Strategy

Decoding plays a crucial role in NL2SQL translation, as
it is responsible for converting the representations generated
by the encoder into the target SQL queries. The choice of
decoding strategy directly affects the quality and performance
of the generated SQL queries. An excellent decoding strategy
not only produces syntactically correct SQL queries but also
ensures that the semantics of the SQL queries align with the NL
and can even optimize the execution efficiency of the queries.

We will introduce several key decoding strategies employed
by existing NL2SQL models, as shown in Figure 8, namely:
1) greedy search-based decoding strategy, 2) beam search-
based decoding strategy, and 3) constraint-aware incremental
decoding strategy. We will then discuss the advantages and
disadvantages of each approach.

1) Greedy Search-based Decoding Strategy: The greedy
search-based decoding strategy is a simple and fast approach
for decoding. At each decoding step, greedy search selects
the token with the highest current probability as the output.
This strategy builds the final output sequence by continuously
choosing the locally optimal solution, as shown in Figure [§[a).

Since the default decoding strategy of GPT series models
(e.g., GPT-4) is greedy search-based decoding, NL2SQL so-
lutions based on GPT fall into this category. These include
MAC-SQL [64], SuperSQL [46], C3 [60], DAIL-SQL [6],
DIN-SQL [5]l, and PET-SQL [55].

Besides GPT-based models, CodeS [47] is a series of
NL2SQL models incrementally pre-trained on StarCoder [49]]
using a large SQL-related corpus, which is also a decoder-only
model using greedy search-based decoding as its decoding
strategy. DTS-SQL [53]] with DeepSeek LLM [102] also uses
greedy search for decoding. Some early NL2SQL models also
use greedy search as their decoding strategy. For example,
SQLNet [41] and Seq2SQL [40] both use greedy search-based
decoding for generating SQL queries.

Greedy search is widely used in many NL2SQL models
due to its fast decoding speed and simple implementation.
However, greedy search only considers the optimal solution at
the current step, ignoring long-term dependencies and overall
optimal solutions, which may result in the generation of SQL
queries that are not globally optimal. Moreover, errors at each
step could lead to biases in decision-making in subsequent
steps, potentially accumulating errors throughout the decoding
process, especially when handling complex queries.

2) Beam Search-based Decoding Strategy: Beam search is
a decoding strategy designed to explore a larger search space
and thus tends to achieve better results. During the decoding
process, beam search retains multiple candidate sequences
(i.e., “beams”) instead of selecting only one optimal token
at each step. In other words, beam search selects the top-k
candidate tokens with the highest probabilities and expands
them until a complete output sequence is generated at each
decoding step, as shown in Figure [§b).

Given the advantages of beam search, several NL2SQL mod-
els employ this decoding strategy [[1]l, [7]l, [45]], [65], [[74]-[76],
[98]. For example, RAT-SQL [74] combines relation-aware
graph structure encoding and generation techniques. During
the decoding process, RAT-SQL uses beam search to generate
multiple candidate SQL queries, which are then reranked, and
the optimal query is selected based on graph structure infor-
mation. Unlike RAT-SQL, EditSQL [98]] employs a context
encoding strategy, incorporating dialogue history information
into the model. During the decoding process, it uses the
beam search-based decoding strategy to generate candidate
SQL queries and utilizes dialogue context information to select
and optimize the queries.
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SmBoP [[75]] uses a semi-autoregressive bottom-up decoding
approach, improving decoding efficiency by parallelizing the
construction and scoring of sub-trees, achieving logarithmic
time complexity. Based on SmBoP, RaSaP [76] employs a
semi-autoregressive bottom-up semantic parser combined with
a tree contextualization mechanism, enhancing the accuracy
and efficiency of generating SQL queries. SQLformer [66] also
uses an autoregressive decoder to generate SQL queries, based
on the node type, adjacency, and the previous action in the
SQL syntax tree.

SC-Prompt [1] designs a keyword-constrained decoding to
ensure the validity of generated SQL structures and a structure-
guided decoding to guarantee the model fills the correct con-
tent. G3R [67]] proposes the AST-Grammar bipartite graph and
knowledge-enhanced re-ranking mechanism in the decoding
stage, dynamically modeling the AST and grammar rules
for generating SQL queries. CatSQL [65]] proposes Column
Action Templates (CAT) to efficiently fill multiple SQL clause
slots through a parameter-sharing decoding network, combined
with semantic correction techniques to ensure the generated
SQL queries are semantically correct.

RESDSQL [7]] employs a skeleton-aware decoder that first
generates the SQL skeleton and then the actual SQL query,
thereby implicitly guiding the SQL parsing process. Unlike
RESDSQL, ZeroNL2SQL [45] uses beam search to retain
the top-k hypotheses as candidate sets in the SQL sketch
generation stage, which are then used for subsequent SQL
query completion and predicate calibration processes.

Compared to greedy search, beam search-based decoding
retains multiple candidate sequences during the decoding
process, which means that more data needs to be processed
at each decoding step. This significantly increases the demand
for memory and computational resources and results in slower
decoding speeds than greedy search. However, by considering
the multiple most probable candidates at each decoding step,
beam search achieves a broader search space and is more likely
to generate more accurate and complex SQL queries.

3) Constraint-aware Incremental Decoding Strategy: The
constraint-aware incremental decoding strategy, introduced by
PICARD [71] (Parsing Incrementally for Constrained Auto-
Regressive Decoding), is specifically designed for NL2SQL
tasks. This strategy aims to ensure the generation of syntacti-
cally correct SQL queries by incorporating constraints during
the decoding process, as shown in Figure [§]c).

Roughly speaking, NL2SQL solutions that employ the
constraint-aware incremental decoding strategy generate SQL
queries incrementally while adhering to SQL grammar rules.
Specifically, at each step of the decoding process, the model
not only predicts the next token but also applies a set of
constraints to validate the syntactic correctness of the partial
SQL query generated so far. These constraints are derived from
SQL grammar rules, which help the model avoid generating
invalid SQL structures. Therefore, PICARD [71]] ensures that
each token added to the query adheres to the required SQL
syntax. This method reduces the likelihood of generating
erroneous or incomplete SQL queries, thereby improving the
overall accuracy and reliability of the NL2SQL translation.

Due to its ability to improve the accuracy of SQL generation,

PICARD [71] has been adopted as a decoding strategy by
several models, including TKK [72], RASAT [70], TS [71]],
SHiP [68]], N-best List Rerankers [69], and Graphix-T5 [44].
Compared to versions without PICARD, these models have
shown improved accuracy.

The constraint-aware incremental decoding strategy, through
incremental decoding and progressively adding constraints,
may require more computational resources and processing
time. However, it effectively ensures the syntactic correctness
of the generated SQL queries, reducing the production of
erroneous and invalid queries, which is suitable for generating
structurally complex SQL queries.

4) Other Decoding Strategies: In addition to the three
common decoding strategies mentioned above, some models
have proposed special decoding strategies. To improve the
decoding accuracy, BRIDGE [77]] introduces some simple
heuristic rules to prune the search space of the sequence
decoder, proposing Schema-Consistency Guided Decoding to
ensure that the generated SQL queries are consistent with the
database schema. This strategy continuously checks whether
the generated SQL queries match the database schema during
the decoding process and adjusts the decoding path based on
the matching results.

C. Task-specific Prompt Strategy

In the era of LLMs, prompt engineering can harness the
capabilities of LLMs and has been widely adopted in natural
language processing, with various frameworks developed for
specific tasks [[103[]-[[105]]. In the NL2SQL field, task-specific
prompt strategy refers to the tailored prompt engineering
techniques used in the NL2SQL translation process. These
strategies instruct the LLMs to optimize the SQL query gen-
eration process according to task-specific rules, improving the
accuracy of translating complex semantic NL query into the
corresponding SQL query.

Roughly speaking, there are two kinds of task-specific
prompt strategies used by NL2SQL solutions, namely:

e Chain-of-Thought: this strategy drives the model to think

and reason about the task goal sequentially.

o Decomposition: this strategy breaks down the final task
and uses different modules to reason about subtasks
separately.

1) Chain-of-Thought:  Chain-of-Thought (CoT) [106],
widely recognized for its effectiveness, facilitates the
integration of specialized semantic rules into the generation
process of language models. This strategy fully shows the
thinking and reasoning process of LLMs, enhancing the
accuracy and interpretability of the generated results. The
application of CoT in NL2SQL tasks not only enhances the
performance of NL2SQL models but also ensures that the
SQL statements generated are more aligned with human
expectations [[107]]. With further research, CoT is often used
as a key component in subsequent work rather than a separate
trick. For example, CHESS [52] transforms NL into SQL
statements using a streamlined pipeline that relies on LLMs
and CoT. This process comprises entity and context retrieval,
schema selection, SQL generation, and revision.
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In addition, the integration of CoT with other techniques
can significantly enhance the performance of NL2SQL models.
These techniques comprises in-context learning [56f, [62],
logical synthesis [54]f], calibration with hints [60], [67] and
multi-agent system [64]]. In-context learning enriches the CoT
by embedding a deeper comprehension of the linguistic envi-
ronment, facilitating a more precise semantic mapping to SQL
constructs. The application of logical synthesis ensures that
the inferential steps within the CoT are not only contextually
grounded but also adhere to formal logical structures, thereby
enhancing the validity of the deductive process. Calibration
with hints serves to fine-tune the model’s responses, align-
ing them with the intricacies of NL, which is critical for
accurately capturing user intent in the translation from NL
to SQL. Moreover, the integration of multi-agent systems
and CoT introduces a distributed problem-solving approach,
where specialized agents collaborate to address various stages
of the CoT, such as schema linking and generation. This
collaborative framework not only expedites the CoT process
but also enhances the system’s resilience and adaptability. In
essence, these techniques contribute to a more sophisticated
and robust NL2SQL framework, characterized by a heightened
degree of precision and reliability in the translation of complex
NL into accurate SQL.

2) Decomposition: The decomposition strategy decom-
poses a given target into several sub-tasks and then addresses
the sub-tasks step by step to achieve improved generation
results. There are differences in the granularity of subtask
decomposition in different works. Compared with CoT, the
decomposition strategy can make each sub-module focus on
executing a sub-step of the generation process, so as to ensure
better generation quality and interpretability. DTS-SQL [53]
splits the work task into two subtasks, schema linking, and
generation, to close the performance gap between open-source
LLMs and closed-source LLLMs. More works apply decompo-
sition strategies to smaller fine-grained processes. The TKK
framework [72] divides the initial NL2SQL parsing tasks into
various small individual subtasks, with each corresponding
to the mapping of the NL query to one or more clauses
of the SQL query. This decomposition approach allows the
model to concentrate on learning the generation of each clause,
thereby compelling the model to understand the problem,
the database schema, and the alignment between each SQL
clause. Similar task decomposition strategies also exist in
the work of G®R [67] and DEA-SQL [59]. Moreover, the
decomposition of the NL can also significantly alleviate the
complexity involved in model learning. MAC-SQL [64] incor-
porates a Decomposer agent designed to break down the user’s
original problem into several subproblems. This decomposition
process aims to lessen the complexity of the origin question,
enabling the generation of simpler SQL queries to solve each
individual subproblem. DIN-SQL [5] employs a sophisticated
categorization module for decomposition. It classifies queries
into distinct complexity groups: EASY, NON-NESTED, and
NESTED, with the reference of NL and database schema.
This module is fundamental for the subsequent decomposition
process, which meticulously dissects complex queries into
simpler sub-problems. By strategically identifying and sep-

NL Query:
Which film has more than 5 actors and less than 3 in the inventory?
film film_actor inventory
title [ film_id [ ... name [film_id] ... tag [film_id] ...

®--®Foreign Key

Intermediate Representation:
SQL-like Syntax Language
(e.g. NATSQL)

SELECT film.title
WHERE count(film_actor.*)>5 And count(inventory.*)<3

SQL-like Sketch Structure
(e.g. SC-Prompt)

SELECT [column]
FROM [table]

JOIN [table]

ON [table].[column]
=[table].[column]
GROUP BY [column]
HAVING count([column]) > n
INTERSECT

(SELECT [column]
FROM [table]

JOIN [table]

ON [tablel].[column]

[column] title

[table] film

[table] film_actor

[table].[column] film.film_id
[table].[column] film_actor.film_id
[column] film_id

[column] = [n] 5

[column] title

[table] film

[table] inventory

[table].[column] film.film_id
=[table].[column] [table].[column] inventory.film_id
GROUP BY [column] [column] film_id

HAVING count([column]) < n) [column] * [n] 3

SQL:

SELECT T1.title

FROM film AS T1 JOIN film_actor AS T2 ON T1.film_id = T2.film_id
GROUP BY T1.film_id HAVING count(x) > 5

INTERSECT

SELECT T1.title

FROM film AS T1 JOIN inventory AS T2 ON T1.film_id = T2.film_id
GROUP BY T1.film_id HAVING count(x) < 3

Fig. 9: An Example of the Intermediate Representation.

arating schema linking, join conditions and nested structures,
the module facilitates a structured generation of SQL queries
and amplifies the accuracy of translating complex the NL query
into executable SQL.

In general, the decomposition strategy can decompose the
NL2SQL translation process into several sub-tasks, which
allows the sub-modules in each stage to focus on improving
the quality of the corresponding generation, thus optimizing
the final SQL query generation. However, this strategy also
brings the challenge of increased computational cost, which
increases the difficulty of model training and deployment

D. Intermediate Representation for NL2SQL Translation

As mentioned before, the NL2SQL task is challenging due
to the complexity and ambiguity of NL queries, as well as the
formal and structured nature of SQL. Thus, researchers try to
simplify this process by designing a grammar-free intermedi-
ate representation compared to SQL as the bridge between the
“free-form” NL query and the “constrained and formal” SQL
query. Roughly speaking, an intermediate representation (IR)
is a structured yet flexible grammar that captures the essential
components and relationships of an NL query without the strict
syntax rules of SQL.

As shown in Figure 0] we categorize existing intermediate
representation strategies into two groups: /) SQL-like syntax
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language, and 2) SQL-like sketch structure. SQL-like syntax
language strategies transform the NL query into short SQL-
like expressions, bridging the gap between the NL query and
the final SQL. SQL-like sketch structure strategies construct the
sketch rules and maps the NL into an SQL-like skeleton, which
can simplify the parsing process and improve the generation
quality of the final SQL query.

1) SQL-like syntax language: The SQL-like syntax lan-
guage approach typically involves transforming a user’s query
into an intermediate SQL-like expression, which bridges the
gap between NL and predefined rules. This process serves to
alleviate the challenges associated with semantic parsing and
query generation. The early approach to intermediate represen-
tation involved leveraging information retrieval techniques to
translate the original question and schema information into an
intermediate syntax representation, which was then converted
into SQL [935], [108]]. Subsequent research efforts have focused
on consolidating or eliminating partial clauses or operations
in SQL queries to simplify SQL-like syntax language. In the
research of Schema-free SQL [95]], the original question can
be transformed into an intermediate representation even in
the absence of user knowledge about schema information.
SyntaxSQLNet [96] removes portions of the FROM and JOIN
clauses in the syntax language, while SemQL [97]] removes
the FROM, JOIN, ON and GROUP BY clauses and combines
WHERE and HAVING conditions. EditSQL [98]] adds WHERE
and HAVING conditions but retains the GROUP BY clause.

Recent research has made advancements in simplifying
the structure and generality of syntax languages in order
to enhance their parsing efficiency. For example, Natural
SQL (NatSQL) [99] is a widely recognized SQL-like syntax
language that eliminates SQL statement operators, keywords,
set operators, and other elements seldom found in user prob-
lem descriptions. It enhances schema linking by minimizing
the necessary number of schema items. The combination of
NatSQL with pre-trained language models is able to achieve
effective generation results on existing benchmarks [7], [61].
The Query Plan Language (QPL) [109] leverages the problem
decomposition strategy to improve the parsing of intricate SQL
queries. By breaking down a SQL query into modularized
sub-queries, the complexity of the original query is reduced.
This approach mitigates parsing difficulties associated with
complex problems and cross-domain complex queries. Ques-
tion Decomposition Meaning Representation (QDMR) [100],
[110] decomposes the original question into a number of
atomic questions. Each atomic question serves as an intermedi-
ate representation of the original question and can be translated
into a set of small-scale formal operations involving tasks
such as selecting entities, retrieving attributes, or aggregating
information. The QDMR pipeline is structured to be executed
sequentially in order to provide a comprehensive answer to
the original question.

The utilization of SQL-like syntax language has shown the
potential to bridge the gap between user queries and databases.
However, there are still some limitations in this area. Previous
studies have been limited by high complexity and inadequate
coverage of database structures [99]. With the increase in
database size and domain knowledge, the simplicity of SQL-
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like syntax language faces great challenges. Furthermore,
some existing SQL-like syntax languages still require manual
construction and adjustment, which increases the cost and
difficulty of deploying the model. Current research efforts aim
to enhance the quality of SQL generation by integrating SQL-
like syntax language with other generation methodologies.

2) SQL-like sketch structure: With reference to the struc-
tural characteristics of SQL, researchers design the sketch rules
that mirror SQL structure for parsing, enabling the mapping
of various NL into the sketch space of rules. This kind
of approach reduces the complexity of content parsing and
enhances the quality of generation.

Early works typically parse questions into SQL-like sketch
structures using fixed SQL rules and neural networks. The
SyntaxSQLNet [96] encompasses the SQL-based syntax tree
alongside its corresponding decoder. This model breaks down
the decoding process into nine modules, predicting various op-
erators, keywords, and database information individually. Sub-
sequently, it combines these predicted tokens to perform the
decoding process. Similarly, Lee introduces a self-attention-
based database schema encoder designed for decoding SQL
clauses [111]. The model incorporates several SQL sketch-
specific decoders, with each decoder comprising a collection
of submodules defined by the SQL syntax of each clause.
These initial approaches are constrained by the base model’s
performance and do not achieve relatively good results in
large-scale benchmarks, but they do provide a reference for
subsequent research.

In recent years, the development of language models has
allowed researchers to design more elaborate SQL-like struc-
tures for parsing. The SC-prompt [1]] utilizes a two-stage di-
vide and conquer method for NL2SQL parsing. During the ini-
tial phase, it instructs PLM to generate specific SQL structures,
such as query commands and operators, while also supplying
placeholders for any missing identifiers. In the subsequent
phase, it directs the PLM to generate SQL structures containing
actual values to fill the previously provided placeholders.
CatSQL [65]] constructs a template sketch with slots serving as
initial placeholders. Different from the former, this sketch is
much more general. Its base model can focus on the parsing of
user queries to fill these placeholders, consequently decreasing
the computational resource cost. Furthermore, it implements
a novel semantic correction algorithm to assess the semantic
accuracy of the resulting SQL queries and rectify any semantic
issues detected in the generated queries. ZeroNL2SQL [45]]
integrates the schema alignment capabilities of PLM with the
complex reasoning capabilities of LLMs. Initially, it utilizes
PLM to produce SQL sketches for achieving schema alignment
and subsequently employs LLMs to execute complex content
reasoning for populating missing information. Additionally,
it also proposes a predicate calibration method for guiding
the design of language models for SQL sketches based on
database instances and selecting the optimal SQL query. TA-
SQL [54] combines pandas code and symbolic representation
to generate an abstract sketch of SQL and uses this sketch
to align with schema information in subsequent modules to
generate complete SQL.

Moreover, several recent works cover both SQL-like syn-
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tax language and SQL-like sketch transition methods. For
instance, RESDSQL [7] introduces a rank-enhanced encod-
ing and skeleton-aware decoding framework, which separates
schema linking from skeleton parsing. During the decoding
generation phase, its decoder initially produces the SQL skele-
ton and then generates the actual SQL query. This approach
implicitly constrains the SQL parsing and governs the quality
of generation. When combined with NatSQL, RESDSQL
demonstrates the ability to further enhance the quality of SQL
query generation.

In general, SQL-like sketch structure can be more easily
combined with other strategies, such as decomposition strategy
or SQL-like syntax language strategy. In addition, it can
more fully utilize the comprehension and cloze capabilities of
existing LLMs and reduce the dependence on professionals.
With the expansion of database size and domain-specific
knowledge bases, the design of intermediate representation
should be more flexible and generalized, adapting to the
NL2SQL translation process in the case of complex conditions
and multiple nested queries.

VI. POST-PROCESSING STRATEGIES FOR NL2SQL

After the NL2SQL model generates the SQL, we can refine
it to better meet user expectations. This process is called
post-processing. Post-processing involves adding information
or using other models to further improve the generated SQL.
The current approach to post-processing primarily focuses on
correction, consistency, execution, and the n-best list to amend
the SQL. It is worth noting that the NL2SQL model may adopt
multiple post-processing methods for better results.

A. SQL Correction Strategies

The SQL generated by the model may sometimes contain
syntax errors. SQL Correction Strategies aim to prompt LLMs
to correct syntax errors in SQL.

SQL queries generated by NL2SQL models may lack or
contain redundant keywords, such as DESC, DISTINCT, and
Aggregate functions. To address these issues, DIN-SQL [5]
proposes a self-correction module that guides the model to
correct these errors. This module is implemented in the zero-
shot setting, where the model is only provided with the buggy
SQL and asked to fix the errors. The study suggests two
different prompts for different models: a general prompt for
the CodeX model and a mild prompt for the GPT-4 model.
In the general prompt, the model is requested to identify and
correct errors in the “BUGGY SQL”. The mild prompt does
not assume the SQL query has errors. Instead, it asks the model
to provide potential issues with clauses.

Given the SQL predicates (column®, value®) predicted by
LLMs, there might be two types of errors: incorrectly predicted
values and incorrect predicted columns. ZeroNL2SQL [45]]
adopts a multi-level matching approach that incrementally
expands the matching scope across three levels (columns,
tables, and databases) to sequentially match predicate values.
The matched predicate values are then returned to the LLMs,
helping it generate SQL queries consistent with the database
content.

In the multi-agent collaboration framework, MAC-SQL [64]
designs a Refiner agent, whose primary function is to de-
tect and correct SQL errors. After receiving an SQL query,
the Refiner Agent will diagnose the SQL statement from
three aspects: syntactic correctness, execution feasibility, and
whether it retrieves non-empty results from the database. If
the check fails, it will reason based on the original SQL and
error feedback information or modification guidance signals to
correct the erroneous SQL statement. The core function is to
enable the model to perform self-diagnosis and self-correction,
thereby enhancing the robustness and accuracy of the overall
framework.

Current research [45] primarily focuses on specific syntax
errors in generated SQL, developing a specialized correction
strategy to address these errors. However, as the capabilities of
LLMs continue to improve, syntax errors in generated SQL will
decrease, and guiding LLMs to automatically correct potential
SQL errors may become more general [3], [64].

B. Output Consistency

To enhance the consistency of model outputs, the concept
of self-consistency [112]] has been proposed in previous work.
The motivation behind the self-consistency method is that,
in complex reasoning problems, there are multiple reasoning
paths that can lead to a unique correct answer. It first samples
multiple different reasoning paths and then selects the most
consistent answer to significantly improve the quality of the
output. The NL2SQL task, being similar to reasoning tasks,
can also have multiple ways to write SQL queries that express
the same meaning.

The work of C3-SQL [[60] incorporates the Consistency
Output (CO) component, which aims to maintain the consis-
tency of the generated SQL queries by overcoming the inherent
randomness and uncertainty in the outputs of large language
models, thereby improving zero-shot NL2SQL performance.
Specifically, CO first samples multiple reasoning paths to
generate different SQL answers. Then, these SQL queries
are executed on the database, and the execution results are
collected. After removing errors from all results, a voting
mechanism is applied to these execution results to determine
the most consistent SQL as the final SQL. This method enables
models to leverage the collective knowledge derived from
these multiple paths, resulting in more reliable outcomes in
generating SQL queries.

DAIL-SQL [6] also mentions integration with the self-
consistency module, achieving a 0.4% improvement compared
to not having this module, although it notes that equipping this
module would significantly increase costs and time. Compared
to C3-SQL [60]], CHESS [52] also reduces noise in model
outputs by selecting the most consistent output from three SQL
samples.

The existing self-consistency method generates different
results by increasing the randomness of LLMs’ outputs at
high temperatures and then uses majority voting to select
the final result. However, there are reports [113]] that high
temperatures may reduce the performance of LLM because
of increasing model hallucinations and that the diversity of
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a single model is usually insufficient. To address this issue,
PET-SQL [55]] proposes the cross-consistency strategy, which
instructs multiple LLMs to generate SQL at lower temperatures
and then votes on the execution results of the SQL. This
cross-consistency strategy not only diversifies SQL queries but
also maintains the performance of LLMs at low-temperature
settings.

The above methods can ensure a certain degree of con-
sistency in the queries generated multiple times by a single
or multiple LLMs, reducing the effects caused by model
randomness. This can improve the accuracy of the generated
SQL to some extent, but it also significantly increases inference
cost and time.

C. Execution-Guided Strategies

In the NL2SQL scenario, the execution result of an SQL
query is also a crucial piece of information, as it may indicate
the quality of the query itself. For instance, if the query
execution results in errors or NU LL values, it might indicate
an issue with the SQL query. Currently, many models incor-
porate the results of SQL queries into their post-processing
steps, using these results to guide subsequent processing of the
SQL. The current NL2SQL models have varying approaches to
utilizing the output results.

ZeroNL2SQL [45] continuously generates SQL queries
through an executable check process after obtaining multiple
candidate SQL sketches. It feeds back error messages to the
LLMs to achieve an executable query. This process repeats
continuously until the feedback limit p is reached, after that
the current sketch will be discarded, and the next candidate
SQL sketch is selected. This approach allows the model to
enable the LLMs to complete the SQL query and select the
optimal query as the final output.

Compared to ZeroNL2SQL, CodeS [47] can directly output
complete SQL statements. During the beam search process,
the model generates four SQL candidates and selects the first
executable one as the final SQL result.

In MAC-SQL [64]], a specialized Refiner Agent is used
to detect and automatically correct SQL errors. The Refiner
can use external tools to execute SQL, obtain feedback, and
optimize any incorrect SQL queries.

To reflect human behavior when writing complex SQL
queries, CHESS [52] returns not only the database schema,
question, and candidate SQL queries but also the execution
results of the SQL queries to LLMs. Specifically, CHESS starts
with a draft query and refines it based on its execution results,
making necessary adjustments to the SQL query in case of
syntax errors.

Execution-Guided Strategies can refine SQL based on its
execution results, ensuring that the generated SQL can retrieve
data from the database. However, this approach significantly
increases the SQL generation time when dealing with large
databases.

D. N-best Rerankers Strategies

In NL2SQL tasks, particularly in cross-domain scenarios,
the generated SQL queries may exhibit nuanced variances

in both structure and semantics. The N-best list reranking
method involves reordering the top n results from the original
model, often using a larger model or incorporating additional
knowledge sources. On the Spider dataset, fine-tuning a BERT
model as a reranker, as demonstrated in Bertrand-dr [|114], has
been shown to successfully improve multiple NL2SQL models.

However, the improvement from reordering algorithms in
Bertrand-dr [114]] can be unstable and highly dependent on
threshold settings. In some threshold configurations, it can
even produce negative effects. G®R [67|] proposes a feature-
enhanced reranker based on PLM to address the shortcomings
of Bertrand-dr [[114]]. The SQL reranker leverages a PLM with
hybrid prompt tuning to integrate into the PLM’s knowledge,
effectively bridging gaps between various domains without
adding extra parameters. Contrastive learning is then used to
push away the representation distance of candidate queries,
making them more distinguishable [[115].

Zeng et al. [69] proposes two rerankers from the perspec-
tives of consistency and correctness. To improve consistency,
query plans generated by independent models can be used to
explore N-best reranking. Then, to enhance correctness, they
introduced a heuristic algorithm that applies schema linking
on the N-best list to impose constraints missing in PICARD.
The combined reranking method produces improvements in
TS models.

Similarly, ReFSQL [116] employs a ranking algorithm to
retrieve the most closely related generated results from the
retriever and generator module. In addition, the change of
ranking candidates can further improve the quality of the
final answer generation. ZeroNL2SQL [45]] consists of ranking
the candidate set of SQL sketches. It leverages the Question-
Aware Aligner to identify the candidate that most effectively
aligns with the user’s question intent and specific requirements.
The system then calculates an alignment score between the
candidate SQL sketch and the user question to ensure a more
semantic match with the user’s query.

The N-best reranking method can further filter generated
candidate SQL s based on additional knowledge or larger
models and is widely used in PLM-based methods. However,
this approach is less commonly used with LLMs that have
more parameters and stronger inference capabilities.

VII. NL2SQL BENCHMARKS

In this section, we will first elaborate on the different
types of NL2SQL datasets, highlighting their characteristics, as
shown in Figure[T0] We will then perform an in-depth analysis
of existing NL2SQL datasets (Section [VII-I).

An Overview of NL2SQL Benchmarks. With the advance-
ment of the NL2SQL field, various datasets have been intro-
duced to address the diverse challenges of NL2SQL tasks.

As shown in Figure early NL2SQL datasets were
single-domain with simple SQL queries and databases. As
the field progressed, cross-domain datasets merged, present-
ing challenges for the generalization capabilities of NL2SQL
systems. The introduction of multi-turn datasets required
NL2SQL systems to infer target SQL queries based on con-
textual understanding. Subsequently, multilingual challenges
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TABLE II: Statistics of NL2SQL Benchmarks.
Redundancy Measure DB Complexity Query Complexity
Dataset . #-Unique  #-Questions #-Tables  #-Cols  #-Records Scalar  Math
#-Questions Queries / #-Queries #DBs  #-Tables /DB / Table / DB Tables  Selects Agg Func Comp
ATIS 117 5280 947 5.6 1 25 25 5.24 162243 8.39 1.79 0.22 0 0
GeoQuery [118] 877 246 3.6 1 7 7 4.14 937 222 219 092 0 0.01
Restaurants [119 378 23 16.4 1 3 3 4.00 19295 243 117 035 0 0
Academic [108] 196 185 1.1 1 17 17 3.12 58249674 3.48 1.04 054 0 0
IMDb \ 131 89 1.5 1 17 17 3.94 40147386 291 1.01 0.30 0 0
Yelp \@ 128 110 1.2 1 8 8 5 4823945 241 1 0.45 0 0
Scholar Iﬂ 817 193 4.2 1 10 10 2.50 147416275 3.38 1.02 0.68 0 0.02
WikiSQL [40] 80654 80257 1 26531 26531 1 6.34 17 1 1 0.28 0 0
Advising 4387 205 21.4 1 15 15 7.40 332596 3.41 121 040 0 0.11
Spider [31] 11840 6448 1.8 206 1056 5.13 5.01 8980 1.83 1.17  0.54 0 0
SParC \@ 10228 8981 1.1 166 876 5.28 5.14 9665 1.58 1.10 0.44 0 0
CoSQL |rm 8350 8007 1 166 876 5.28 5.14 9665 1.54 1.11 0.42 0 0
CSpider \w 11840 6408 1.8 206 1056 5.13 5.01 8980 1.83 1.17 0.54 0 0
MIMICSQL [T 20000 10000 2 - - - - - 1.74 1 0.84 0 0
SQUALL \[ﬁ‘ 11276 8296 1.4 2108 4028 1.91 9.18 71 1.22 1.29 0.40 0.03 0.16
FIBEN [12§] 300 233 1.3 1 152 152 1 11668125 5.59 156 1097 0 0.04
ViText2SQL [129] 9693 5223 1.9 166 876 5.28 5.14 9665 1.17 112 0.54 0 0
DuSQL \ 25003 20308 1.2 208 840 4.04 5.29 20 1.49 1.25 0.73 0 0.30
PortugueseSpider [131 9693 5275 1.8 166 876 5.28 5.14 9665 1.85 1.17 0.54 0 0
CHASE 15408 13900 1.1 350 1609 4.60 5.19 4594 1.81 1.16 0.31 0 0
Spider-Syn | 1034 550 1.9 166 876 528 5.14 9665 1.68 1.17 0.59 0 0
Spider-DK [134] 535 283 1.9 169 887 5.25 5.14 9494 1.71 116 0.54 0 0
Spider-Realistic_[135] 508 290 1.8 166 876 5.28 5.14 9665 1.79 121 0.50 0 0
KaggleDBQA [136] 272 249 1.1 8 17 2.12 10.53 595075 1.25 1.05 | 0.69 0 0.04
SEDE \ 12023 11421 1.1 1 29 29 7.28 - 1.90 1.29 0.94 0.49 0.49
MT-TE Oll 489076 4525 108.1 489076 3279004 6.70 551 - 1.69 1.15 0.53 0 0
PAUQ \ 9876 5497 1.8 166 876 5.28 5.14 9693 1.82 1.17 0.53 0 0
knowSQ 28468 - - 488 - - - - - - - - -
Dr.Spider [T4T] 15269 3847 4 549 2197 4 5.54 28460 1.81 119 052 0 0
BIRD (50 10962 10840 1 80 611 7.64 7.14 4585335 2.07 1.09 061 020 0.27
AmbiQ \ 3046 3128 1 166 876 5.28 5.14 9665 1.85 1.17 0.51 0 0.01
ScienceBenchmark [143] 5031 3654 1.4 - - - - - 1.45 1 0.24 0 0.07
BULL [4 7932 5864 1.4 3 78 26 14.96 85631 1.22 1 0.18 0.42 0.05
BookSQL 144 78433 39530 2 1 7 7 8.86 1012948 1.25 1.12 0.78 0.39 0.22

were introduced which contained NL questions and databases
in different languages, thus enhancing the complexity of

multilingual comprehension for NL2SQL systems. With the
growing demand for NL2SQL applications in real-world sce-
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narios, researchers have shifted focus towards the robustness
of NL2SQL systems, leading to the development of datasets
designed to validate robustness from multiple perspectives.
The most recent advancements have introduced large datasets
targeting specific real-world domains, further promoting the
application and development of NL2SQL systems in practice.
The advancement of NL2SQL datasets not only highlights the
continuous progress in the NL2SQL field but also reflects the
new challenges that arise.

A. Single-Domain NL2SQL Datasets

Early NL2SQL datasets focused on specific domains, of-
ten featuring simple SQL query structures. The ATIS [117]
dataset, for example, is centered on flight information,
while GeoQuery [118]] uses a database of US geographical
facts. Other datasets like Restaurants [[119]], Academic [[108]],
IMDb [120], Yelp [120]], and Scholar [121] are tailored to
their respective domains, as indicated by their names. Re-
cently, several large single-domain datasets such as MIM-
ICSQL [126], FIBEN [128], SEDE [137], ScienceBench-
mark [[143]], BULL [48] and BookSQL [144] have been
introduced. Unlike the earlier single-domain datasets, these
datasets feature more complex databases and SQL queries
specific to particular scenarios. This advancement indicates
a growing focus on evaluating the performance and practical
application of NL2SQL systems within specific domains.

B. Cross-Domain NL2SQL Datasets

After the introduction of early single-domain datasets, the
focus of the NL2SQL field shifted towards cross-domain
datasets. Cross-domain datasets challenge the generalization
capabilities of NL2SQL systems across different domains,
requiring these systems to generalize not only to new SQL
queries but also to new databases. The first cross-domain
dataset introduced was WikiSQL [40], which extracted tables
from Wikipedia across various domains. It includes 80,654
manually written NL question and SQL query pairs, each pair
corresponding to a unique table. Following WikiSQL, the Spi-
der [31]] dataset was introduced, featuring 11,840 NL questions
and 6,448 unique SQL queries over 200 databases spanning
138 different domains. Unlike WikiSQL, each (NL, SQL) pair
in Spider corresponds to a database with multiple complex
relational tables rather than a single table.

More recently, the BIRD [50] dataset has gained popularity
as a cross-domain dataset. Compared to Spider, BIRD further
increases the complexity of SQL queries by including SQL
functions and operations not present in Spider, thus providing
an even greater challenge for NL2SQL systems.

C. Multi-Turn NL2SQL Datasets

As the NL2SQL field progressed, there has been a growing
interest in building NL2SQL systems centered on multi-turn
interactive dialogues. To meet this demand, various multi-
turn datasets have been developed. SParC [[123] is a multi-
turn, cross-domain dataset that features approximately 4.3K
question sequences, cumulatively forming over 12K (NL, SQL)
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pairs. It evolved from the Spider dataset and derived from
controlled user interactions. Each question sequence in SParC
contains contextually continuous (NL, SQL) pairs, requiring
the NL2SQL system to understand and maintain the con-
text throughout the interactions. Additionally, CoSQL [124]]
employs a Wizard-of-Oz setup for data collection, resulting
in over 30K turns. Compared to SParC, CoSQL introduces
additional challenges such as unanswerable user questions,
further testing the context understanding of NL2SQL systems.
CHASE [132] is the first multi-turn Chinese dataset. Compared
to SParC and CoSQL, CHASE further reduces the number of
context-independent questions and easy SQL queries, pushing
the boundaries in the dialogue-centered NL2SQL systems.

D. NL2SQL Datasets: Considering Robustness

In real-world applications, NL2SQL systems need to handle
diverse user groups and various database domains, making
robustness a growing focus within the community. Spider-
Syn [133]] is a dataset derived from the Spider development set
through manual annotation. It simulates real-world scenarios
where users may not be familiar with the database schema
by replacing schema-related words in the original NL ques-
tions with synonyms. Similarly, Spider-Realistic [135] is a
subset selected from the Spider development set, consisting
of 508 complex examples with equivalently paraphrased NL
questions. Further, Dr.Spider [[141] dataset applies 17 different
perturbations to the databases, NL questions, and SQL queries
from Spider, providing a comprehensive evaluation of NL2SQL
robustness. Compared to Spider-Syn and Spider-Realistic,
Dr.Spider includes not only semantic-preserving perturbations
but also semantic-changing perturbations.

E. NL2SQL Datasets: Considering SQL Efficiency

Databases in real-world scenarios often contain massive
amounts of data, and a user question can be solved by multiple
SQL queries. However, these SQL queries can vary in execution
efficiency, which has attracted attention from the community.
BIRD [50] is the first cross-domain dataset to incorporate SQL
efficiency, containing 95 large databases with 33.4GB in total
size. As shown in Table [[I, compared to the Spider dataset,
which has approximately 9K records per database, BIRD
has over 4,500K records per database. Additionally, BIRD
introduces a metric for evaluating SQL execution efficiency
called the Valid Efficiency Score (VES), which will be further
discussed in Section

F. Knowledge-Augmented NL2SQL Datasets

NL2SQL systems often require domain-specific knowledge
to effectively perform the NL2SQL task in real-world appli-
cations within specific domains. Integrating domain-specific
knowledge into the NL2SQL task has recently gained increas-
ing interest. KaggleDBQA [136] includes database documen-
tation, such as column and table descriptions and categorical
value descriptions, providing NL2SQL systems with rich do-
main knowledge. In addition, Spider-DK [134], based on the
Spider development set, defines and adds five types of domain
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knowledge to the NL questions, focusing on evaluating the
ability to understand and utilize domain knowledge. Similarly,
BIRD [50] also includes expert-annotated domain knowledge,
which can be further categorized into four main types: numeric
reasoning knowledge, domain knowledge, synonym knowl-
edge, and value illustration.

G. NL2SQL Datasets: Considering NL Ambiguity

In real-world NL2SQL tasks, various ambiguities often arise,
such as semantic ambiguities in NL and overlapping database
schema. Evaluating the performance under the ambiguity of
NL2SQL systems has gained growing attention. AmbiQT [142]
is the first dataset proposed to evaluate the coverage of
ambiguity, which contains over 3000 examples spanning four
different types of ambiguities. In AmbiQT, each NL question
corresponds to two valid SQL queries due to the specific
ambiguity.

H. Synthetic NL2SQL Datasets

As shown in Table despite the fact that many datasets
have been manually annotated so far, the rapid development
of LLMs in the NL2SQL field has led to a growing demand
for NL2SQL data. Consequently, the automatic NL2SQL data
synthesis has become an area of increasing interest within the
community. MIMICSQL [126] uses a template-based method
to generate template questions and the corresponding SQL
queries. However, the template questions may be unreasonable
or unnatural. Therefore, manual annotation is employed to
rewrite the template questions into NL questions. Similarly,
ScienceBenchmark [[143]] uses a template-based method to
initially generate SQL queries. However, it differs by employ-
ing the GPT-3 model to perform the SQL-to-NL translation.
MT-TEQL |[[138] is auto-generated by applying a compre-
hensive set of metamorphic relations, which are semantics-
preserving linguistic and schema transformations, to the Spi-
der development set. Additionally, both Dr.Spider [141] and
AmbiQT [142] utilize the GPT-3.5 model to assist in dataset
creation. Specifically, Dr. Spider focuses on paraphrasing
NL questions, while AmbiQT creates synonyms for the NL
questions.

L. In-depth Analysis of Existing NL2SQL Datasets

To further explore and compare the complexity of different
datasets, we utilize NL2SQL360 [46] evaluation framework to
statistically analyze each dataset. The statistics include three
main categories: Redundancy Measure, DB Complexity, and
Query Complexity. The detailed results are shown in Table
Redundancy Measure includes three aspects: the number of
questions, the number of queries, and their ratio. DB Com-
plexity encompasses four aspects: total number of databases,
total number of tables, average number of tables per database,
average number of columns per table, and average number of
records per database. Query Complexity measures the average
number of tables, SELECT keyword, aggregate functions (e.g.,
SUM), scalar functions (e.g., ROUND), and mathematical
computations (e.g., “+”) in each SQL query. Notably, for

21

datasets without publicly available dev/test datasets, such as
CHASE [132]], BULL [48]], and BookSQL [144], we only
include statistics for the public dataset splits. Additionally,
for datasets that do not have publicly available data, such
as knowSQL [140], the corresponding values in Table [[I| are
indicated with a symbol of “-”.

From the Redundancy Measure perspective, we observe a
trend from early datasets to recent ones where datasets have
grown in size, including increases in the number of questions
and unique queries. Specifically, MT-TEQL [138] stands out
with the highest number of NL questions and the largest
ratio of NL questions to SQL queries, due to its automated
transformation of NL questions, generating a large volume of
variants.

From the Database Complexity perspective, the number of
databases (and tables) in datasets correlates with the tasks they
serve. Single-domain datasets like BookSQL [144] typically
have fewer databases, while datasets focused on robustness
evaluation tasks like Dr.Spider [141] and MT-TEQL [13§]]
feature a higher number of databases. FIBEN [128]] has the
highest average number of tables per database (152) and
large database content (approximately 11.67M records per
database).

Regarding Query Complexity, datasets like FIBEN [128§]
and SEDE [137]] exhibit SQL queries with numerous tables and
aggregate functions, reflecting characteristics found in real-
world financial domains and Stack Exchange websites. Addi-
tionally, recent datasets show a growing emphasis on Scalar
Functions and Mathematical Computations in SQL queries,
which introduces challenges in SQL generation structure not
seen in earlier datasets.

Discussion. Despite the growing number of datasets proposed
by the NL2SQL community, we find that current datasets
still exhibit a gap in SQL complexity compared to real-
world scenarios. For example, recent datasets generally feature
lower counts of SELECT keyword, indicating fewer nested
SQL queries or complex set operations. Moreover, challenges
related to Scalar Functions and Mathematical Computations
also need further attention. We look forward to the community
proposing more datasets that focus on these challenges in the
future.

VIII. EVALUATION AND ERROR ANALYSIS

In this section, we will first introduce the well-established
metrics for evaluating NL2SQL solutions (Section [VIII-A).
We will then present existing evaluation toolkits for assessing
NL2SQL solutions from different perspectives with low human
cost (Section [VIII-B). Finally, we will introduce an error
taxonomy to organize and analyze the SQL errors from the

NL2SQL process (Section [VIII-C).

A. Evaluation Metrics

Evaluation metrics are crucial for assessing the performance
of NL2SQL systems. Researchers have proposed various met-
rics to evaluate from multiple perspectives. We define N as
the dataset size, (); as the NL question of the i-th example, V;
as the execution result set of the ground-truth SQL query Y;
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and V; as the execution result set of the predicted SQL query
Y; by the NL2SQL system.

Execution Accuracy (EX). Execution Accuracy (EX)
evaluates the performance of the NL2SQL system by compar-
ing whether the execution result sets of the ground-truth SQL
queries and the predicted SQL queries are identical. It can be
computed by:

N —

N
where 1(-) is an indicator function that equals 1 if the
condition inside is satisfied, and O otherwise. False negatives
could occur because different SQL queries corresponding to
semantically different NL questions may produce identical
execution result sets (e.g., when the WHERE clause in SQL
query does not effectively filter the database values).

String-Match Accuracy (SM). String-Match Accuracy (SM)
(also called Logical Form Accuracy) simply compares
whether the ground-truth SQL query and the predicted SQL
query are identical as strings. It may penalize SQL queries
that produce the correct execution result sets but do not have
the exact string match with the ground-truth SQL queries. It
can be computed as follows:

vazl I(Yi - Y/z)
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Component-Match Accuracy (CM). Component-Match Accu-
racy (CM) evaluates the detailed performance of the
NL2SQL system by measuring the exact matching of different
SQL components such as SELECT, WHERE and others between
the ground-truth SQL query and the predicted SQL query.
For a specific SQL component C. The computation can be
formalized as follows:

N ~
CMC _ Zi:l ]1(}/10 = }/;C)
N ;

where Y, is the component of SQL query Y;. To correctly de-
termine if an SQL component matches, some SQL components
(e.g,WHERE) do not consider order constraints. Furthermore,
the F1 score can be calculated to report the overall perfor-
mance of each component.

Exact-Match Accuracy (EM). Exact-Match Accuracy is
based on the Component-Match Accuracy (CM) and measures
whether all SQL components C = {C}.} of the predicted SQL
query match the ground-truth SQL query. It can be computed
as follows:
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Valid Efficiency Score (VES).  Valid  Efficiency  Score
(VES) measures the execution efficiency of valid
SQL queries. It considers both the accuracy and efficiency of
SQL execution, which can be computed as follows:
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where R(-) measures the relative execution efficiency of the
predicted SQL query compared to the ground-truth SQL query,
eliminating uncertainties due to machine status. E(-) measures
the efficiency of specific SQL query, which can be refer to
execution time, memory usage and more.

Query Variance Testing (QVT). Query Variance Testing
(QVT) measures the robustness and flexibility of the
NL2SQL system in handling variations in NL questions.
For a given SQL query Y;, there typically exist multiple
corresponding NL questions, denoted as pairs {(Q1, Y), (Q2,
Y., ooy (Qm, Yi)}. QVT metric can be calculated by:

Qvr =~ i (Z;‘mi 1 (I(Qij) = Yi)) o

N <4 m;
=1

where m; denotes the number of different NL variations for the
SQL query Y;, and F(Q;;) is the predicted SQL query for the
j-th NL variation of Y;. It is notable that QVT only considers
(NL, SQL) pairs that the NL2SQL system can correctly process
at least one NL variation. This implicitly constructs a specific
test dataset for each NL2SQL system.

B. NL2SQL Evaluation Toolkits

With the advancement of the NL2SQL field, the perfor-
mance of NL2SQL systems on various benchmark datasets has
improved. However, in real-world applications, the style of
NL questions, the database schemas across different domains,
and the characteristics of SQL queries may vary in different
scenarios. Evaluating NL2SQL systems using overall metrics
on existing benchmark hold-out datasets cannot fully capture
their real-world performance and robustness.
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To provide a comprehensive understanding of NL2SQL
systems in real-world scenarios, recent advancements have
been made in NL2SQL evaluation toolkit [46], [[138].

MT-TEQL [138] is a unified framework for evaluating
the performance of NL2SQL systems in handling real-world
variations in NL questions and database schemas. It is based
on a metamorphic testing approach, implementing semantic-
preserving transformations of NL questions and database
schemas to automatically generate their variants without man-
ual efforts. Specifically, it includes four types of transforma-
tions for NL questions: Prefix Insertion, Prefix Insertion, Prefix
Substitution and Synonym Substitution. It also includes eight
types of transformations for database schemas: Normalization,
Flattening, Opaque Key, Table Shuffle, Column Shuffle, Col-
umn Removal, Column Renaming, and Column Insertion.

A recent advancement is NL2SQL360 [46], a multi-angle
evaluation framework that provides fine-grained assessments
of NL2SQL systems in various specific scenarios. Compared
to MT-TEQL, it focuses on the varied characteristics of SQL
queries across various application scenarios. For example, in
Business Intelligence (BI) scenarios, SQL queries typically
include aggregate functions, nested queries, or top-k queries.
As shown in Figure NL2SQL360 comprises six core
components: Dataset, Model Zoo, Metrics, Dataset Filter,
Evaluator, and Analysis, which provide a unified interface
that is agnostic to specific models and datasets. Users can use
public or private datasets to automatically conduct system-
atic evaluations of NL2SQL systems across various metrics.
They can also customize metrics based on specific scenario
requirements, or analyze the performance on subsets with
scenario-related SQL characteristics. This provides researchers
and practitioners with deep insights into the performance of
NL2SQL systems in specific application scenarios.

Despite the progress made by the community in developing
NL2SQL evaluation toolkits, real-world NL2SQL systems still
face numerous variations that differ from existing benchmark
datasets, such as database schema design principles. We an-
ticipate the development of more powerful evaluation toolkits
in the future to enhance the application of NL2SQL systems
in practical scenarios.

C. A Taxonomy for NL2SQL Errors Analysis

Error Analysis refers to the process of examining the errors
made by a model aimed at directing future corrective measures
and enhancing model performance. Error Analysis is a critical
aspect of NL2SQL research, as it provides valuable insights
into the limitations and challenges faced by current models.
By systematically examining errors, researchers can identify
specific areas for improvement, enhance model robustness, and
develop more effective training strategies.

In this section, we first introduce the existing NL2SQL
error taxonomy. We then call for a standardized and effective
taxonomy for NL2SQL Errors. Finally, we proposed design
principles and tried to design a two-level taxonomy.

Existing Taxonomies for NL2SQL Errors Analysis. In exist-
ing sophisticated NL2SQL research [5]], [52]], [146]-[148]], error
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Fig. 12: Statistics of Din-SQL Errors by Our Taxonomy.

analysis has begun to be conducted, and various taxonomies
of error types have been proposed.

Ning et al. [[147] developed a detailed taxonomy of error
types. They categorized the error types along two dimensions:
(1) the syntactic dimension shows the specific parts of the SQL
where an error occurs, organized by SQL keywords like WHERE
and JOIN; (2) the semantic dimension highlights which as-
pects of the natural language description are misinterpreted
by the model, such as misunderstanding a value or the name
of a table. The combination of these two dimensions results
in a total of 40 distinct categories.

DIN-SQL [5] manually examined the failed queries and
classified them into six categories: (1) Schema Linking, where
the model fails to identify column names, table names, or
entities mentioned in the questions; (2) JOIN, where the model
fails to identify all the necessary tables or the correct foreign
keys for joins; (3) GROUP BY, where the SQL requires a
GROUP BY, but the model either does not recognize the need
for GROUP BY or chooses incorrect columns for GROUP BY;
(4) Queries with Nesting and Set Operations, where the model
fails to recognize or correctly implement the nested structure
or set operation; (5) Invalid SQL, where the generated SQL
contains syntax errors; and (6) Miscellaneous, which includes
cases that do not fit into the other categories.

SQL-PLAM [148] categorizes errors into five types: (1)
Schema Linking, where the model fails to select the rele-
vant tables required for NL; (2) Misunderstanding Database
Content, where the model is not able to accurately interpret
the data within the tables; (3) Misunderstanding Knowledge
Evidence, where the model fails to use or ignores human-
annotated evidence; (4) Reasoning, which includes an in-
adequate understanding of the question, leading to queries
that lack the necessary reasoning steps to generate correct
results; and (5) Syntax-Related Errors, where the generated
SQL contains syntax errors.
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Our Taxonomy for NL2SQL Errors Analysis. The above
taxonomy is designed for specific datasets and has limited
scalability. Due to inconsistent taxonomies, the annotated
data cannot be shared or compared between different studies.
The inconsistency of error taxonomies hinders collaborative
improvements and the cumulative advancement of knowledge
in NL2SQL Error Analysis. To effectively address this issue, it
is imperative to develop a standardized and effective taxonomy
of error types. We propose the following principles to guide
the development of NL2SQL error taxonomy:

o Comprehensiveness: The taxonomy should encompass
all potential errors that could occur during the NL2SQL
conversion process.

o Mutual Exclusivity: Each error type should be clearly
distinct with no overlap, to avoid ambiguity in error
classification.

o Extensibility: The taxonomy should be adaptable to in-
corporate new error types as NL2SQL technologies and
methodologies evolve.

e Practicality: The taxonomy should be practical and ap-
plicable in real-world settings, aiding developers in diag-
nosing and correcting errors effectively.

Privacy-reserved data ﬁ Open-source LLMs

Guidance for
Data-driven LLM Optimization

Privacy-free data

lﬁ Closed-source LLMs
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Following these principles, we attempted to design a taxonomy
containing two levels:

o Error Localization: This level focuses on identifying the
specific parts of the SQL where errors occur, such as in the
SELECT clause. It is vital for precisely locating where
misunderstandings or misinterpretations arise, thereby
facilitating targeted corrections.

e Cause of Error: This level focuses on understanding
why the model is wrong when generating SQL. For
example, value errors in the WHERE clause may indicate
the model’s insufficient ability to understand and retrieve
database content. On the other hand, conditional errors
in the WHERE clause typically reveal flaws in semantic
understanding, where the model fails to grasp the logical
requirements of the query.

A Case Study of Error Analysis. We collected the errors gen-
erated by DIN-SQL [5] on the Spider [31] and manually
classified them according to the taxonomy we designed, as
illustrated in Figure [T2} The results indicate that this taxonomy
is effective; however, we believe that the NL2SQL Error
Taxonomy is a field that requires ongoing exploration and
updates, and it is impossible to design a perfect taxonomy in
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one attempt. Therefore, we hope the research community will
continuously engage in refining and enhancing this taxonomy.

IX. PRACTICAL GUIDANCE FOR DEVELOPING NL2SQL
SOLUTIONS

In this section, we present a roadmap for optimizing LLMs
for the NL2SQL task, based on data privacy and data volume
(Section [[X-A). Designing an NL2SQL system is complex
and necessitates careful consideration of various scenarios.
Therefore, we provide a decision flow for selecting appropriate
NL2SQL modules tailored to various scenarios (Section [[X-B)).

A. A Data-Driven Roadmap of Optimizing LLMs for NL2SQL

In Figure [13{a), we outline a strategic roadmap designed
to optimize LLMs for NL2SQL task, based on data privacy
and data volume. Data privacy affects the choice of open-
source and closed-source LLMs, while data volume affects
the strategies for optimization for training and inference.

Condition 1: Data Privacy. When dealing with privacy-
reserved data, the only option is to select open-source LLMs
because closed-source models typically require the invocation
of external APIs, which may involve sending data to servers
and potentially lead to data breaches. The advantage of open-
source models lies in their ability to allow users to entirely
control the training and inference process in the local envi-
ronment, thereby enhancing data privacy protection.

Condition 2: Data Volume. For open-source LLMs, it is pos-
sible to optimize both the training and inference phases.
However, for closed-source LLMs, due to the opaque nature of
the models, optimization can only be applied to the inference
stage. When massive amounts of NL2SQL task-related data
are available (often in the tens of gigabytes), LLMs can be
optimized by pre-training. When hundreds to thousands of
(NL, SQL, DB) pairs are available, the model can be optimized
by fine-tuning. For scenarios with limited labeled data, a few-
shot learning approach is viable. In the absence of labeled
data, zero-shot methods become particularly important. Note
that consideration must also be given to the corresponding
hardware resources and API costs when adopting different
optimization strategies.

The insights and strategies discussed for optimizing LLMs
for the NL2SQL task can be applied to all NLP tasks. This
universality underscores the importance of carefully consider-
ing data privacy and volume in all NLP applications.

B. Decision Flow of Selecting NL2SQL Modules

In Figure [I3[b), we outline recommendations for selecting
different NL2SQL modules for various scenarios and discuss
the corresponding positive and negative impacts.

Scenario 1: Complex Database Schema with Numerous Tables
and Columns. In this scenario, we recommend the adoption of
Schema Linking strategies. This approach primarily benefits
the system by reducing token costs and decreasing noise from
the redundant database schema. However, it is important to
note that these advantages come at the expense of increased
time costs.
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Scenario 2: Mismatch between Database Content and NL
Details. In this scenario, we recommend the adoption of
Database Content Retrieval strategies. This approach primarily
benefits the system by increasing the accuracy of SQL value
selection. However, this leads to increased time and token
costs.

Scenario 3: Execution Results Can be Accessed. In this
scenario, we recommend the adoption of Execution-Guided
Strategies. This approach primarily benefits the system by
filtering non-executable SQL. However, the drawback is the
increased time cost due to the need to execute queries on the
database to obtain results. This time cost can be significantly
high, especially when dealing with very large databases.

In summary, while each module offers distinct advantages
for handling specific NL2SQL scenarios, it is crucial to balance
these advantages against the associated disadvantages in the
NL2SQL system design.

X. OPEN PROBLEMS

In this section, we present several open problems and
discuss the research challenges for NL2SQL.

A. Open NL2SQL Problem

In many real-world scenarios, such as government open data
platforms, citizens may pose questions that require querying
multiple databases and aggregating results for a response. For
example, a citizen might ask, “What is the average processing
time for tax returns in the last five years?” Answering this
question involves retrieving relevant tables from different
databases, such as tax records, processing time logs, and
statistical reports databases, and then generating multiple SQL
queries over these databases.

The Open NL2SQL problem needs to translate NL queries
into SQL queries by not only relying on a fixed database but
also identifying multiple relevant databases (tables) within an
enterprise-scale DBMS. In addition, one open NL query may
have multiple corresponding SQL queries, where each SQL
query accesses different databases. This approach contrasts
with the traditional NL2SQL task (i.e., “Closed NL2SQL”),
where the target database for generating and executing SQL
is specified by the user.

Therefore, the Open NL2SQL problem introduces unique
challenges that complicate the translation of natural language
queries into SQL across multiple and heterogeneous databases.
These challenges include (1) database retrieval, where relevant
databases must be accurately identified and retrieved from a
vast pool of data sources, (2) handling heterogeneous schemas,
which requires integrating data with varying structures and
terminologies, demanding sophisticated schema matching and
linking techniques, (3) answer aggregation, involving the
combination of several SQL queries from different databases,
requiring robust methods to plan the query order, resolve
conflicts, and ensure consistency, (4) domain adaptation, cru-
cial for generalizing models across different domains and
addressing variations in terminology and structure, (5) scala-
bility and efficiency, as the system must handle large volumes
of data while maintaining performance, and (6) evaluating
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and benchmarking open NL2SQL solutions, which requires
comprehensive metrics and datasets that reflect real-world
complexity.

B. Develop Cost-effective NL2SQL Methods

LLM-based NL2SQL methods show significant promise but
are hindered by high token consumption, affecting both costs
and inference times. On the other hand, our review shows
that PLM-based NL2SQL methods excel at processing complex
SQL queries and accurately interpreting database schemas.

Therefore, a promising direction is to combine the best of
both worlds. In other words, we can develop modular NL2SQL
solutions or utilize a multi-agent framework to interleave
LLMs and PLMs for the NL2SQL task. This hybrid strategy
may benefit the handling of complex queries while conserving
tokens and reducing costs. However, effectively integrating
and balancing the use of LLMs and PLMs to optimize both
performance and resource efficiency is still an open problem.

C. Make NL2SQL Solutions Trustworthy

Developing trustworthy NL2SQL solutions is crucial for
ensuring the accuracy and reliability of generated SQL queries,
which can reduce risks and minimize the need for manual
intervention. Next, we will discuss several research topics.

Interpreting NL2SQL Solutions.  Understanding why a
NL2SQL model performs a specific way can greatly enhance
our confidence in its reliability. For example, we can employ
Explainable AI techniques [149], [150] such as surrogate
models [[151] and saliency maps [152] to understand
the decision-making process of the model. However, the
effectiveness of applying these techniques in the NL2SQL
setting is still an unknown question, especially with the
combined use of LLMs and PLMs.

On the other hand, existing research explores employing
multi-agent frameworks with LLMs to improve the reliability
of NL2SQL solutions. A multi-agent framework can divide the
NL2SQL task into specialized sub-tasks handled by different
agents, each optimized for its specific role. This approach
can enhance the overall robustness and accuracy of the sys-
tem by leveraging the strengths of various agents. However,
effectively coordinating multiple agents or models, ensuring
they work harmoniously, and optimizing their collective per-
formance remain challenging and open research questions.

NL2SQL Debugging Tools: Inspired by code compilers that
provide step-by-step debugging functionality, developing a
visual debugger for NL2SQL could significantly enhance the
accuracy and reliability of NL2SQL systems. Such a tool
would measure both the semantic and syntactic errors of
the generated SQL queries. NL2SQL debugging tools would
detect potentially erroneous SQL queries generated by the
model and allow users to step through the SQL generation
process, identify mismatches, and understand the logic behind
the generated SQL. However, achieving this goal presents
significant challenges. Traditional code compilers primarily
capture syntactic errors, while NL2SQL debugging must also
address semantic errors, i.e., ensuring that the generated SQL
query accurately reflects the intent of the NL query.
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D. NL2SQL with Ambiguous and Unspecified NL Queries

Deploying NL2SQL solutions in real-world scenarios re-
quires addressing the challenge of processing ambiguous and
unspecified NL queries, as these are common in user interac-
tions. We discuss several strategies to alleviate this issue.

NL Query Rewriter aims to refine NL queries for clarity and
specificity. This process involves transforming vague or am-
biguous user inputs into well-defined and precise queries.
Future research should focus on developing methods to au-
tomatically or interactively refine NL queries with user input,
leveraging database schema knowledge. By understanding the
structure and constraints of the database, the rewriter can
suggest modifications that align the NL with the underlying
schema, ensuring that the queries input into the system are as
unambiguous and specific as possible.

NL Query Auto-completion assists users in refining their
queries by suggesting precise completions based on common
patterns and historical data. This approach can help users
formulate their queries more accurately by providing contex-
tually relevant options. The challenge lies in developing an
algorithm that effectively uses database context to produce
clear, unambiguous NL queries. By analyzing the initial user
input and incorporating information about the database schema
and past query patterns, the auto-completion system can offer
suggestions that guide users toward more precise and well-
formed NL queries.

Training with Ambiguous and Unspecified NL Queries. If the
model is trained or fine-tuned with a large amount of (NL, SQL)
pairs, in which the NL queries are ambiguous and/or un-
specified, undoubtedly, the NL2SQL solution would benefit
greatly in terms of handling such cases. However, the cost
of developing and curating such extensive datasets is high.
One promising direction is to synthesize training data in an
adaptive way, which will be introduced later.

E. Adaptive Training Data Synthesis

Current learning-based NL2SQL methods struggle to adapt
to new, unseen domains, highlighting a gap in generalizability
across data domains. In addition, the performance of these
methods heavily relies on the quality, coverage, diversity, and
amount of the training data.

Therefore, an interesting research problem is to automat-
ically and incrementally generate (NL, SQL) pairs based on
the model performance. The key idea is to dynamically syn-
thesize or augment the training data by leveraging feedback
from NL2SQL evaluation results. Specifically, by incorporating
insights from evaluation metrics and evaluation results, we
can identify specific weaknesses of the model. Using this
information, we can synthesize training data that continually
evolves with the help of LLMs to cover a broader range of
scenarios and domains. This adaptive training data synthesis
method may enhance the model’s ability to generalize and
perform accurately in diverse contexts, leading to more robust
and versatile NL2SQL solutions.
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XI. CONCLUSION

In this paper, we provide a comprehensive review of
NL2SQL techniques from a lifecycle perspective in the era
of LLMs. We formally state the NL2SQL task, discuss its
challenges, and present a detailed taxonomy of solutions based
on the language models they rely on. We summarize the
key modules of language model-powered NL2SQL methods,
covering pre-processing strategies, translation models, and
post-processing techniques. We also analyze NL2SQL bench-
marks and evaluation metrics, highlighting their characteristics
and typical errors. Furthermore, we outline a roadmap for
practitioners to adapt LLMs for NL2SQL solutions. Finally, we
maintain an updated online handbook to guide researchers and
practitioners in the latest NL2SQL advancements and discuss
the research challenges and open problems for NL2SQL.
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